Elk Creek Solar Project Docket No: 9819-CE-100

APPENDIX X

Economic Impact Study

Economic Impact and Land Use Analysis of Elk Creek Solar Project

December 2021

by David G. Loomis Strategic Economic Research, LLC strategiceconomic.com 815-905-2750

About the Author

Dr. David G. Loomis

Professor of Economics, Illinois State University Co-Founder of the Center for Renewable Energy President of Strategic Economic Research, LLC

Dr. David G. Loomis is Professor of Economics at Illinois State University and Co-Founder of the Center for Renewable Energy. He has over 10 years of experience in the renewable energy field and has performed economic analyses at the county, region, state and national levels for utility-scale wind and solar generation. He has served as a consultant for Apex Clean Energy, Clean Line Energy Partners, EDF Renewables, E.ON Climate and Renewables, Geronimo Energy, Invenergy, J-Power, the National Renewable Energy Laboratories, Ranger Power, State of Illinois, Tradewind, and others. He has testified on the economic impacts of energy projects before the Illinois Commerce Commission, Iowa Utilities Board, Missouri Public Service Commission, Illinois Senate Energy and Environment Committee, the Wisconsin Public Service Commission, Kentucky Public Service Commission, Ohio Public Siting Board, and numerous county boards. Dr. Loomis is a widely recognized expert and has been quoted in the Wall Street Journal, Forbes Magazine, Associated Press, and Chicago Tribune as well as appearing on CNN.

Dr. Loomis has published over 38 peer-reviewed articles in leading energy policy and economics journals. He has raised and managed over \$7 million in grants and contracts from government, corporate and foundation sources. He received the 2011 Department of Energy's Midwestern Regional Wind Advocacy Award and the 2006 Best Wind Working Group Award. Dr. Loomis received his Ph.D. in economics from Temple University in 1995.

Strategic Economic Research, LLC

Strategic Economic Research, LLC (SER) has produced over 150 economic impact reports in 28 states for renewable energy projects across the US. SER specializes in economic analysis at the county, regional, state or national levels to analyze the jobs, income, taxes and economic output that will flow from a particular industry.

Research Associates

Bryan Loomis, MBA, Vice President Ethan Loomis, Director of Marketing Madison Schneider, Project Manager Christopher Thankan, Economic Analyst Zoe Calio, Project Manager Patrick Chen, Property Tax Analysis Kathryn Keithley, Data Specialist Morgan Stong, Data Specialist David Whitworth, Property Tax Analysis

I. Executive Summary	1
II. U.S. Solar PV Industry Growth and Economic Development	3
a. U.S. Solar PV Industry Growth	3
b. Wisconsin Solar PV Industry	4
c. Economic Benefits of Utility-Scale Solar PV Energy	6
III. Project Description and Location	8
a. Elk Creek Solar Project	8
b. Dunn County, Wisconsin	
i. Economic and Demographic Statistics	9
ii. Agricultural Statistics	12
IV. Land Use Methodology	13
V. Land Use Results.	15
VI. Economic Impact Methodology	21
VII. Economic Impact Results	23
VIII. Tax Revenue	26
IX. References	27
X. Curriculum Vita - David G. Loomis	29

Figure 1 – Annual U.S. Solar PV Installations, 2010-2026	. 3
Figure 2 – U.S. Annual Solar PV Installed Price Trends Over Time	. 3
Figure 3 – U.S. Utility PV Installations vs. Contracted Pipeline	. 3
Figure 4 – Solar Company Locations in Wisconsin	. 4
Figure 5 – Wisconsin Annual Solar Installations	. 5
Figure 6 – Electric Generation Employment by Technology	. 5
Figure 7 – Location of Dunn County, Wisconsin	. 8
Figure 8 – Total Employment in Dunn County from 2007 to 2019	. 9
Figure 9 – Population in Dunn County from 2010 to 2019	10
Figure 10 – Median Household Income in Dunn County from 2010 to 2019	10
Figure 11 – Real Gross Domestic Product (GDP) in Dunn County from 2010 to 2019	. 11
Figure 12 – Number of Farms in Dunn County from 1992 to 2017	. 11
Figure 13 – Land in Farms in Dunn County from 1992 to 2017	. 11
Figure 14 – U.S. Corn Acreage and Yield	14
Figure 15 – U.S. Soybean Acreage and Yield	14
Figure 16 – Simulations of Real Profits Per Acre Based on Data from 1992	18
Figure 17 – Simulated Price of Corn Per Bushel to Match the Solar Lease	18
Figure 18 – Simulated Price of Soybeans Per Bushel to Match the Solar Lease	.19
Figure 19 – Expected Annual Increase in Production Due to Higher Yields from Corn Versus	
Expected Decrease in Production from Acreage	20
Figure 20 – Expected Annual Increase in Production Due to Higher Yields from Soybeans	
Versus Expected Decrease in Production from Acreage	20

Table 1 – Employment by Industry in Dunn County	9
Table 2 – Agricultural Statistics for Dunn County, Wisconsin	15
Table 3 – Machinery Depreciation and Opportunity Cost of Farmer's Time	16
Table 4 – Profit Per Farm Calculations for Dunn County, Wisconsin	16
Table 5 – Total Employment Impact from Elk Creek Solar Project	23
Table 6 – Total Earnings Impact from Elk Creek Solar Project	25
Table 7 – Total Output Impact from Elk Creek Solar Project	25
Table 8 – Illustration of "Utility Aid" Paid by Elk Creek Solar	26

Elk Creek PV I, LLC is developing the Elk Creek Solar Project in Dunn County, Wisconsin. The purpose of this report is to aid decision makers in evaluating the economic impact of this project on Dunn County and the State of Wisconsin. The basis of this analysis is to study the direct, indirect, and induced impacts on job creation, wages, and total economic output.

Elk Creek Solar Project is a 300-megawatt alternating current (MWac) utility-scale solar powered-electric generation facility that will utilize photovoltaic (PV) panels installed on a single-axis tracking system. Solar power electric generation facilities are commonly referred to as PV systems or solar PV. The Project also has an additional 76 MW of battery storage. The Project represents an investment in excess of \$292 million. The total development is anticipated to result in the following:

Jobs – all jobs numbers are full-time equivalents¹

- Over 325 new local jobs during construction for Dunn County
- Over 683 new local jobs during construction for the State of Wisconsin
- Over 17.5 new local long-term jobs for Dunn County
- Over 24.4 new local long-term jobs for the State of Wisconsin

<u>Earnings</u>

Earnings are wages, salary and benefits that result from a job.

- Over \$20.5 million in new local earnings during construction for Dunn County
- Over \$47.4 million in new local earnings during construction for the State of Wisconsin
- Over \$685 thousand in new local long-term earnings for Dunn County annually
- Over \$1.4 million in new local long-term earnings for the State of Wisconsin annually

¹The number of jobs can easily change with adjustments in the project design, technology, or construction/operational requirements.

<u>Output</u>

Output is the value of goods and services in a specific area, like GDP.

- Over \$36.5 million in new local output during construction for Dunn County
- Over \$93.8 million in new local output during construction for the State of Wisconsin
- Over \$2.5 million in new local long-term output for Dunn County annually
- Over \$4.0 million in new local long-term output for the State of Wisconsin annually

Property Taxes

- Over \$500,000 annually in township property taxes
- Over \$700,000 annually in county property taxes for Dunn County
- Over \$1.2 million annually in property taxes for all taxing districts

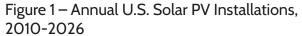
Land Use

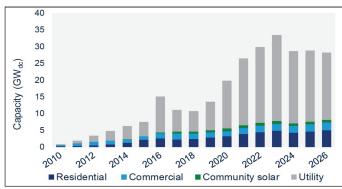
- Using a real-options analysis, the land use value of solar leasing far exceeds the value for agricultural use.
- Dunn County:

o The price of corn would need to rise to \$14.18 per bushel or yields for corn would need to rise to 329.1 bushels per acre by the year 2053 for corn farming to generate more income for the landowner and local community than the solar lease.

o Alternatively, the price of soybeans would need to rise to \$46.00 per bushel or yields for soybeans would need to rise to 105.4 bushels per acre by the year 2053 for soybean farming to generate more income for the landowner and local community than the solar lease.

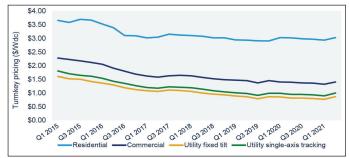
o At the time of this report, corn and soybean prices are \$4.15 and \$10.40 per bushel respectively and yields are 171.1 and 42.3 bushels per acre respectively.


II. U.S. Solar PV Industry Growth and Economic Development a. U.S. Solar PV Industry Growth


The U.S. solar industry is growing at a rapid but uneven pace, with systems installed for onsite use, including residential, commercial and industrial properties and with utility-scale solar poweredelectric generation facilities intended for wholesale distribution, such as Elk Creek Solar. From 2013 to 2018, the amount of electricity generated from solar had more than quadrupled, increasing 444%. (EIA, 2020). The industry has continued to add increasing numbers of PV systems to the grid. In the first half of 2021, the U.S. installed over 11,000 MW direct current (MWdc) of solar PV driven mostly by utility-scale PV which exceeds most of the annual installations in the last decade. Figure 1 shows the historical capacity additions as well as the forecasted additions into 2026. The primary driver of this overall sharp pace of growth is large price declines in solar equipment. The overall price of solar PV has declined from \$5.79/watt in 2010 to \$1.33/watt in 2020 (SEIA, 2020). According to Figure 2, utilityscale solar fixed tilt and single-axis tracking have declined from \$1.50/watt at the beginning of 2015 to near \$1.00/watt by the first guarter of 2021. Solar PV also benefits from the Federal Investment Tax Credit (ITC) which provides a 26 percent tax credit for residential and commercial properties.

Utility-scale PV leads the installation growth in the U.S. A total of 19,200 MWdc of utility PV projects were completed in 2020. According to Figure 3, there are 85,000 MWdc of contracted utility-scale installations that have not been built yet.

¹ There was a dramatic increase in 2016 because the industry was expecting the expiration of the federal investment tax credit and rushed to complete as many projects as possible before the expected expiration. This rush effectively pulled projects that were originally slated for 2017 and 2018 forward into 2016 resulting in the high amount installed in 2016 but a lower amount installed in 2017 and 2018.



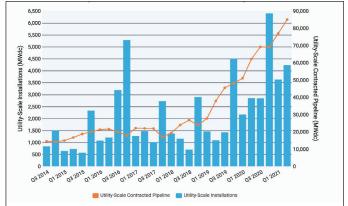

Source: Solar Energy Industries Association, Solar Market Insight Report Q3 2021

Figure 2 – U.S. Annual Solar PV Installed Price Trends Over Time

Source: Solar Energy Industries Association, Solar Market Insight Report Q3 2021

Figure 3 – U.S. Utility PV Installations vs. Contracted Pipeline

Source: Solar Energy Industries Association, Solar Market Insight Report 2021 Q2

According to SEIA, Wisconsin is ranked 27th in the U.S. in cumulative installations of solar PV. California, Texas, and Florida are the top 3 states for solar PV which may not be surprising because of the high solar irradiation that they receive. However, other states with similar solar irradiation to Wisconsin rank highly including New Jersey (7th), Massachusetts (8th), New York (10th), and Maryland (17th). In 2020, Wisconsin installed 231.19 MW of solar electric capacity bringing its cumulative capacity to 488.62 MW.

Wisconsin has great potential to expand its solar installations. Wisconsin has several utility-scale solar farms in operation: New Auburn DPC Solar is a 2.5 MW installation in New Auburn, WI; Target has a 0.38 MW installation at its location in Oak Creek, WI; and Warren DPC Solar is a 2 MW installation in Warren, WI. The 300 MW Elk Creek Solar Project will be one of the largest installations in Wisconsin to date.

There are more than 171 solar companies in Wisconsin including 43 manufacturers, 77 installers/ developers, and 51 others.² Figure 4 shows the locations of solar companies in Wisconsin as of the time of this report. Currently, there are 2,910 solar jobs in the State of Wisconsin according to SEIA.

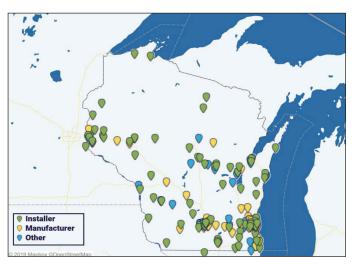


Figure 4 – Solar Company Locations in Wisconsin

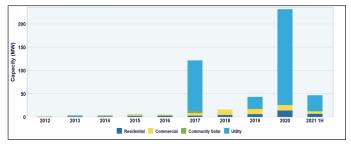

Source: Solar Energy Industries Association, Solar Spotlight: Wisconsin

Figure 5 shows the Wisconsin historical installed capacity by year according to the SEIA. Huge growth was seen in 2020 and is forecasted to continue to grow in 2021 and beyond. Over the next five years, solar in Wisconsin is projected to grow by 3,741.21 MW.

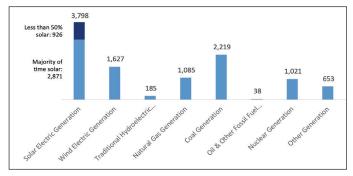

The U.S. Department of Energy sponsors the U.S. Energy and Employment Report each year. Electric Power Generation covers all utility and non-utility employment across electric generating technologies, including fossil fuels, nuclear, and renewable technologies. It also includes employees engaged in facility construction, turbine and other generation equipment manufacturing, operations and maintenance, and wholesale parts distribution for all electric generation technologies. According to Figure 6, employment in the solar energy industry (3,798) is larger than coal generation (2,219) and wind electric generation (1,627).

Figure 5 – Wisconsin Annual Solar Installations

Source: Solar Energy Industries Association, Solar Spotlight: Wisconsin

Figure 6 – Electric Generation Employment by Technology

Source: US Energy and Employment Report 2020: Wisconsin

Utility-scale solar powered-electric generation facilities have numerous economic benefits. Solar PV installations create job opportunities in the local area during both the short-term construction phase and the long-term operational phase. In addition to the workers directly involved in the construction and maintenance of the solar energy project, numerous other jobs are supported through indirect supply chain purchases and the higher spending that is induced by these workers. Solar PV projects strengthen the local tax base and help improve county services, and local infrastructure, such as public roads.

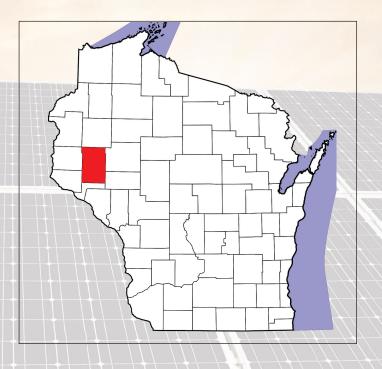
Numerous studies have quantified the economic benefits of Solar PV projects across the United States and have been published in peer-reviewed academic journals using the same methodology as this report. Some of these studies examine smallerscale solar systems, and some examine utility-scale solar energy. Croucher (2012) uses NREL's Jobs and Economic Development Impacts ("JEDI") modeling methodology to find which state will receive the greatest economic impact from installing one hundred 2.5 kW residential systems. He shows that Pennsylvania ranked first supporting 28.98 jobs during installation and 0.20 jobs during operations. Illinois ranked second supporting 27.65 jobs during construction and 0.18 jobs during operations. More recently, Michaud et. al (2020) performed an analysis of the economic impact of utility-scale solar energy projects in the State of Ohio. They detail three scenarios: low (2.5 GW), moderate (5 GW) and high (7.5 GW). Using the JEDI model, they find that between 18,039 and 54,113 jobs would be supported during construction and between 207 and 618 jobs would be supported annually during operations. In addition, between \$22.5 million and \$67.5 million annually in tax revenues would come from these projects.

Knapp (2021) examines the local economic impact from installing a 150 MW solar project in rural Wisconsin with a 100% local workforce. He finds that such a project would generate \$11.8 million in economic activity.

Several other reports quantify the economic impact of solar energy. Bezdek (2006) estimates the economic impact for the State of Ohio and finds the potential for PV market in Ohio to be \$25 million with 200 direct jobs and 460 total jobs. The Center for Competitive Florida (2009) estimates the impact if the state were to install 1,500 MW of solar and finds that 45,000 direct jobs and 50,000 indirect jobs could be created. The Solar Foundation (2013) uses the JEDI modeling methodology to show that Colorado's solar PV installation to date created 10,790 job-years. They also analyze what would happen if the state were to install 2,750 MW of solar PV from 2013 to 2030 and find that it would result in nearly 32,500 job years. Berkman et. al (2011) estimates the economic and fiscal impacts of the 550 MWac Desert Sunlight Solar Farm. The project creates approximately 440 construction jobs over a 26-month period, \$15 million in new sales tax revenues, \$12 million in new property revenues for Riverside County, CA, and \$336 million in indirect benefits to local businesses in the county.

Finally, Jenniches (2018) performed a review of the literature assessing the regional economic impacts of renewable energy sources. After reviewing all of the different techniques for analyzing the economic impacts, he concludes "for assessment of current renewable energy developments, beyond employment in larger regions, IO [Input-Output] tables are the most suitable approach." (Jenniches, 2018, 48). Input-Output analysis is the basis for the methodology used in the economic impact analysis of this report.

III. Project Description and Location


a. Elk Creek Solar Project

Elk Creek PV I, LLC is developing the Elk Creek Solar Project in Dunn County, Wisconsin. The Project consists of an estimated 300-megawatt alternative current (MWac) utility-scale solar powered-electric generation facility that will utilize photovoltaic (PV) panels installed on a single-axis tracking system. The Project represents an investment in excess of \$292 million.

b. Dunn County, Wisconsin

Dunn County is located in the Western part of Wisconsin (see Figure 7). It has a total area of 864 square miles and the U.S. Census estimates that the 2019 population was 45,368 with 18,671 housing units. The county has a population density of 53 (persons per square mile) compared to 89 for the State of Wisconsin. Median household income in the county was \$58,783.

Figure 7 – Location of Dunn County, Wisconsin

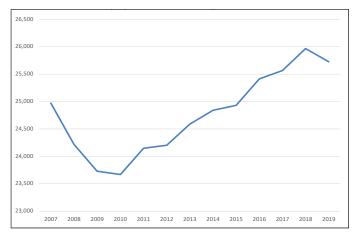

As shown in Table 1, the largest industry is "Administrative Government" followed by "Manufacturing", "Health Care and Social Assistance", and "Transportation and Warehousing". These data for Table 1 come from IMPLAN covering the year 2019 (the latest year available).

Table 1 – Employment by Industry in Dunn County

Industry	Number	Percent
Administrative Government	4,153	16.0%
Manufacturing	3,877	15.0%
Health Care and Social Assistance	2,937	11.3%
Transportation and Warehousing	2,230	8.6%
Retail Trade	2,196	8.5%
Agriculture, Forestry, Fishing and Hunting	1,998	7.7%
Accommodation and Food Services	1,657	6.4%
Construction	1,372	5.3%
Other Services (except Public Administration)	1,037	4.0%
Professional, Scientific, and Technical Services	886	3.4%
Wholesale Trade	780	3.0%
Real Estate and Rental and Leasing	727	2.8%
Finance and Insurance	711	2.7%
Administrative and Support and Waste Manage- ment and Remediation Services	566	2.2%
Government Enterprises	228	0.9%
Arts, Entertainment, and Recreation	224	0.9%
Information	94	0.4%
Management of Companies and Enterprises	71	0.3%
Educational Services	68	0.3%
Utilities	50	0.2%
Mining, Quarrying, and Oil and Gas Extraction	31	0.1%

Table 1 provides the most recent snapshot of total employment but does not examine the historical trends within the county. Figure 8 shows employment from 2007 to 2019. Total employment in Dunn County was at its lowest at 23,668 in 2010 and its highest at 25,966 in 2018.

Figure 8 – Total Employment in Dunn County from 2007 to 2019

Source: Bureau of Economic Analysis, Regional Data, GDP and Personal Income

Source: Impact Analysis for Planning (IMPLAN), County Employment by Industry

Similar to the upward trend of employment, the overall population in the county has been increasing steadily, as shown in Figure 9. Dunn County population was 43,365 in 2010 and 44,759 in 2019, a gain of 1,394. The average annual population increase over this time period was 155.

Like the population trend, household income has been trending upward in Dunn County. Figure 10 shows the median household income in Dunn County from 2010 to 2019. Household income was at its lowest at \$45,878 in 2011 and its highest at \$61,506 in 2019.

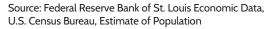
Figure 9 – Population in Dunn County from 2010 to 2019

45,000

44,500

44,000

43,500


43.000

42,500

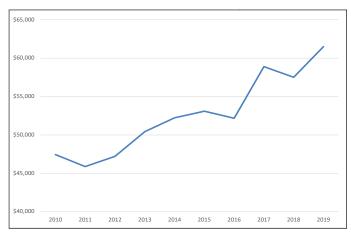
2010

2011

2012

2013

Figure 10 – Median Household Income in Dunn County from 2010 to 2019


2014

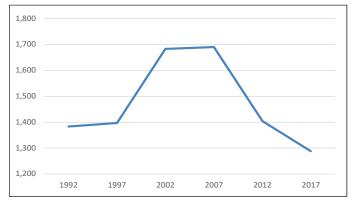
2015

2016

2017

2018

Source: Federal Reserve Bank of St. Louis Economic Data, U.S. Census Bureau, Estimate of Median Household Income



2019

Real Gross Domestic Product (GDP) is a measure of the value of goods and services produced in an area and adjusted for inflation over time. The Real GDP for Dunn County has fluctuated since 2010, as shown in Figure 11.

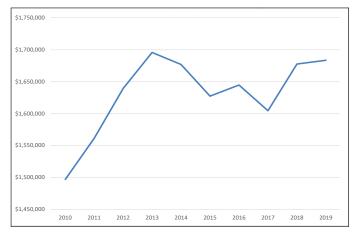
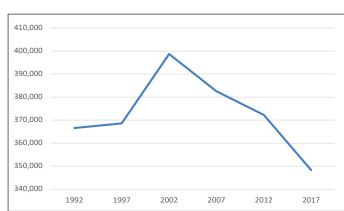

The farming industry has declined in Dunn County. As shown in Figure 12, the number of farms has decreased from 1,690 in 2007 to 1,288 in 2017. The amount of land in farms has decreased as well. The county farmland hit a high of 398,768 acres in 2002, and then fell to 348,301 acres in 2017 according to Figure 13.

Figure 12 – Number of Farms in Dunn County from 1992 to 2017



Source: Census of Agriculture, 1992-2017

Figure 11 – Real Gross Domestic Product (GDP) in Dunn County from 2010 to 2019

Source: Bureau of Economic Analysis, Regional Data, GDP and Personal Income

1992 to 2017

Figure 13 – Land in Farms in Dunn County from

Source: Census of Agriculture, 1992-2017

ii. Agricultural Statistics

Wisconsin is ranked ninth among U.S. states in total value of agricultural products sold (Census, 2017). It is ranked eighth in the value of livestock, and sixteenth in the value of crops (Census, 2017). In 2020, Wisconsin had 64,400 farms and 14.3 million acres in operation with the average farm being 222 acres (State Agricultural Overview, 2020). Wisconsin had 1.2 million cattle and produced 30.7 billion pounds of milk (State Agricultural Overview, 2020). In 2020, Wisconsin yields averaged 173 bushels per acre for grain corn with a total market value of \$2.1 billion (State Agricultural Overview, 2020). Hay yields averaged 3.07 tons per acre with a total market value of \$2.3 billion (State Agricultural Overview, 2020). The average net cash farm income per farm is \$36,842 (Census, 2017).

In 2017, Dunn County had 1,288 farms covering 348,301 acres for an average farm size of 270 acres (Census, 2017). The total market value of products sold was \$213 million, with 52 percent coming from livestock sales and 48 percent coming from crop sales (Census, 2017). The average net cash farm income of operations was \$38,385 (Census, 2017).

The 2,492 acres planned to be used by the Elk Creek Solar Project represents just 0.7% of the acres used for farming in Dunn County. As we will show in the next section, solar farming is a better land use on a purely economic basis than livestock or crops for the particular land in this Project.

To analyze the specific economic land use decision for a solar energy facility, this section uses a methodology first proposed by Gazheli and Di Corato (2013). A "real options" model is used to look at the critical factors affecting the decision to lease agricultural land to a company installing a solar powered electric generating facility. According to their model, the landowner will look at his expected returns from the land that include the following: the price that they can get for the crop (typically corn or soybeans); the average yields from the land that will depend on amount and timing of rainfall, temperature and farming practices; and the cost of inputs including seed, fuel, herbicide, pesticide and fertilizer. Not considered is the fact that the landowner faces annual uncertainty on all these items and must be compensated for the risk involved in each of these parameters changing in the future. In a competitive world with perfect information, the returns to the land for its productivity should relate to the cash rent for the land.

For the landowner, the key analysis will be comparing the net present value of the annual solar lease payments to expected profits from farming. The farmer will choose the solar farm lease if:

NPV (Solar Lease Payment_t) > NPV ($P_t * Yield_t - Cost_t$)

Where NPV is the net present value; Solar Lease Payment, is the lease payment the owner receives in year t; P_t is the price that the farmer receives for the crop (corn or soybeans) in year t; Yield, is the yield based on the number of acres and historical average of county-specific productivity in year t; Cost, is the total cost of farming in year t and will include (the cost of seed, fertilizer, the opportunity cost of the farmer's time. Farming profit is the difference between revenue (price times yield) and cost. The model will use historical agricultural data from the county (or state when the county data is not available).

Figure 14 shows the dramatic increase in U.S. corn yields since 1926. Soybean yields have also increased though not as dramatically. Figure 15 displays the soybean yields in the U.S. since 1980.

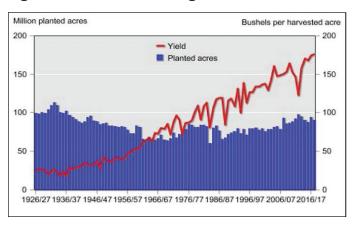
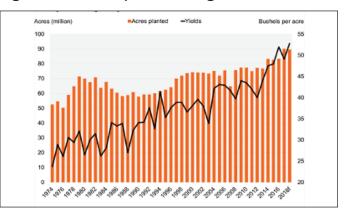



Figure 15 – U.S. Soybean Acreage and Yield

Source: USDA National Agricultural Statistics Service, Crop Production, November, 2018

The standard net present value calculation presented above, uses the expected value of many of the variables that are stochastic (have some randomness to them). In order to forecast returns from agriculture in future years, we use a linear regression using an intercept and time trend on historical data to predict future profits.

$\pi_t = \propto +\beta * time$

Where π_t is the farming profit in year t; α is intercept; β is the trend and time is a simple time trend starting at 1 and increasing by 1 each time period.

Source: USDA, Economic Research Service, https://www.ers.usda.gov/ topics/crops/soybeans-oil-crops/oil-crops-sector-at-a-glance/

V. Land Use Results

In order to analyze future returns from farming the land, we will use historical data from Dunn County to examine the local context for this analysis. The United States Department of Agriculture's National Agricultural Statistics Service publishes county-level statistics every five years. Table 2 shows the historical data from 1992 to 2017 for total farm income, production expenses, average farm size, net cash income, and average market value of machinery per farm.

	1992	1997	2002	2007	2012	2017
Total Farm Income Per Farm	NA	NA	\$4,782	\$10,110	\$9,440	\$14,113
Total Farm Production Expenses (average/farm)	\$60,583	\$63,346	\$56,477	\$83,505	\$141,011	\$138,117
Average Farm Size (acres)	265	264	237	226	265	270
Net Cash Income per Farm ³	\$16,046	\$17,432	\$10,740	\$27,604	\$56,161	\$38,385
Average Market Value of Machinery Per Farm	\$65,199	\$71,437	\$66,769	\$90,324	\$141,909	\$148,164

Table 2 – Agricultural Statistics for Dunn County, Wisconsin

Source: United States Department of Agriculture's National Agricultural Statistics Service (NASS), Census of Agriculture

The production expenses listed in Table 2 include all direct expenses like seed, fertilizer, fuel, etc. but do not include the depreciation of equipment and the opportunity cost of the farmer's own time in farming. To estimate these last two items, we can use the average market value of machinery per farm and use straight-line depreciation for 30 years with no salvage value. This is a very conservative estimate of the depreciation since the machinery will likely qualify for a shorter life and accelerated or bonus depreciation. To calculate the opportunity cost of the farmers time, we obtained the mean hourly wage for farming in each of these years from the Bureau of Labor Statistics. Again, to be conservative, we estimate that the farmer spends a total of 16 weeks @ 40 hours/week farming in a year. It seems quite likely that a farmer spends many more hours than this including direct and administrative time on the farm. These statistics and calculations are shown in Table 3.

³ Net Cash Income per farm is reported by the NASS and does not exactly equal income minus expenses. NASS definition for this item is, "Net cash farm income of the operators. This value is the operators' total revenue (fees for producing under a production contract, total sales not under a production contract, government payments, and farm-related income) minus total expenses paid by the operators. Net cash farm income of the operator includes the payments received for producing under a production contract and does not include value of commodities produced under production contract by the contract growers. Depreciation is not used in the calculation of net cash farm income."

	1992	1997	2002	2007	2012	2017
Average Market Value Machinery Per Farm	\$65,199	\$71,437	\$66,769	\$90,324	\$141,909	\$148,164
Annual Machinery Depreciation over 30 years - Straight Line (Market Value divided by 30)	\$2,173	\$2,381	\$2,226	\$3,011	\$4,730	\$4,939
Mean Hourly Wage in WI for Farming (Bureau of Labor Statistics)	\$6.14	\$6.98	\$8.79	\$9.65	\$10.81	\$12.55
Annual Opportunity Cost of Farmer's Time (Wage times 16 weeks times 40 Hours/Week)	\$3,930	\$4,467	\$5,626	\$6,176	\$6,918	\$8,032

Table 3 – Machinery Depreciation and Opportunity Cost of Farmer's Time for Dunn County, Wisconsin

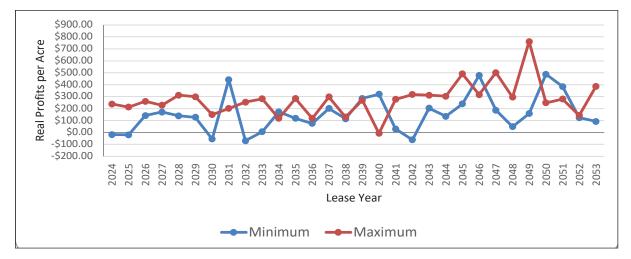
To get the total profitability of the land, we take the net cash income per farm and subtract depreciation expenses and the opportunity cost of the farmer's time. To get the profit per acre, we divide by the average farm size. Finally, to account for inflation, we use the Consumer Price Index (CPI) to convert all profit into 2017 dollars (i.e. current dollars).⁴ These calculations and results are shown in Table 4.

Table 4 – Profit Per Farm Calculations for Dunn County, Wisconsin

	1992	1997	2002	2007	2012	2017
Net Cash Income per Farm	\$16,046	\$17,432	\$10,740	\$27,604	\$56,161	\$38,385
Machinery Depreciation	(\$2,173)	(\$2,381)	(\$2,226)	(\$3,011)	(\$4,730)	(\$4,939)
Opportunity Cost of Farmer's Time	(\$3,930)	(\$4,467)	(\$5,626)	(\$6,176)	(\$6,918)	(\$8,032)
Profit	\$9,943	\$10,584	\$2,889	\$18,417	\$44,512	\$25,414
Average Farm Size (Acres)	265	264	237	226	265	270
Profit Per Acre	\$37.52	\$40.09	\$12.19	\$81.49	\$167.97	\$94.13
CPI	141.9	161.3	180.9	210.036	229.601	246.524
Profit Per Acre in 2017 Dollars	\$65.18	\$61.27	\$16.61	\$95.65	\$180.35	\$94.13

 4 We will use the Consumer Price Index for All Urban Consumers (CPI-U) which is the most common CPI used in calculations. For simplicity, we will just use the CPI abbreviation.

Using an unsophisticated static analysis, the farmer would be better off using his land for solar if the solar lease rental per acre exceeds the 2017 profit per acre of \$94.13 which adjusts to \$105.61 after counting for inflation in Dunn County. Yet this static analysis fails to capture the dynamics of the agricultural market and the farmer's hope for future prices and crop yields to exceed the current level. To account for this dynamic, we use the real options model discussed in the previous section. Recall that the net returns from agriculture fluctuates according to the following equation:


$\pi_t = \propto +\beta * time$

Where π_t is the farming profit in year t; α is intercept; β is the trend and time is a simple time trend starting at 1 and increasing by 1 each time period.

Using the Census of Agriculture data from 1992 to the present, the intercept is \$40.71 with a standard error of \$38.37. The time trend is \$3.32 with a standard error of 2.4. This means that agriculture profits are expected to rise by \$3.32. Both the intercept and the coefficient on the time trend have a wide variation as measured by the standard error. The wide variation means that there will be a lot of variability in agricultural profits from year to year.

Over the period from 2017 to 2053, we assume that the profit per acre follows the equation above but allows for the random fluctuations. Because of this randomness, we can simulate multiple futures using Monte Carlo simulation. We assume that the solar farm will begin operation in 2024 and operate through 2053. Using 500 different simulations, the real profit per acre never exceeds \$796 in any single year. Overall, the maximum average annual profit over the 30 years is \$289 and the minimum average annual profit is \$240. Figure 16 is a graph of the highest and lowest real profit per acre simulations. When comparing the average annual payment projected in the maximum simulation by 2053 to the solar lease per acre payment, the solar lease provides higher returns than farming in all of the 500 simulations. This means the farmer is financially better off under the solar lease in 100% of the 500 scenarios analyzed.

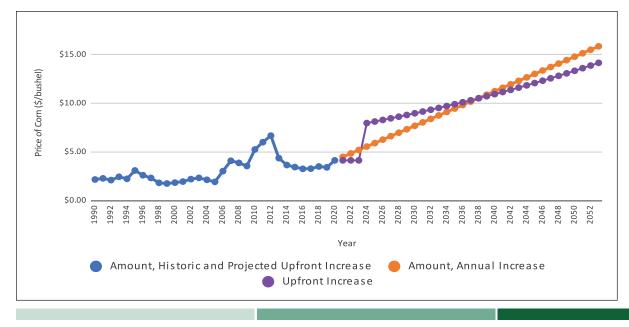


Figure 16 – Simulations of Real Profits Per Acre Based on Data from 1992

Another way to look at this problem would be to ask: How high would the price of corn have to rise to make farming more profitable than the solar lease (adjusted for inflation)? Below we assume that the yields on the land and all other input costs stay the same. In this case, the price of corn would have to rise from \$4.15 per bushel in 2020 to \$7.98 in 2024 and rise to \$14.18 per bushel by 2053 as shown in Figure 17. Alternatively, the price of corn would need to rise by \$0.36 per bushel each year from 2020 to 2053 when it would reach \$15.88 per bushel.

Now let's turn our attention to soybeans. How high would the price of soybeans have to rise to make farming more profitable than the solar lease (adjusted for inflation)? If we assume the yields and input costs stay the same, the price of soybeans would have to rise from \$10.40 per bushel in 2020 to \$25.91 per bushel in 2024 and rise to \$46.00 by 2053 as shown in Figure 18. For a linear increase, the price of soybeans would need to rise by \$1.32 per bushel each year from 2020 to 2053 when it would reach \$53.87 per bushel.

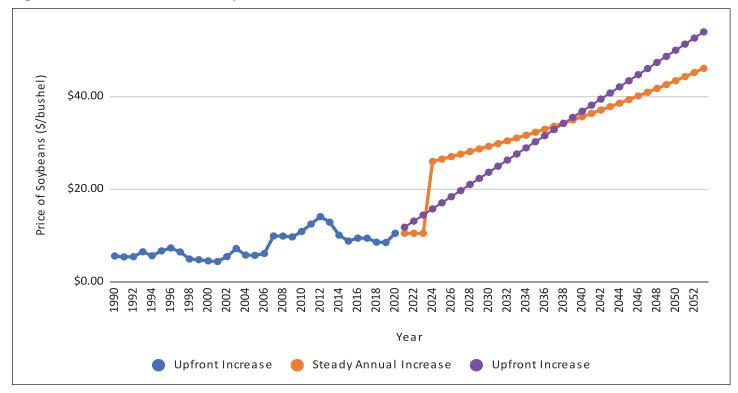


Figure 18 – Simulated Price of Soybeans Per Bushel to Match the Solar Lease

If we assume that the price of corn stays the same, the yields for corn would need to increase from 171.1 bushels per acre in 2020 to 329.1 bushels per acre in 2024 and stay at that level until 2053. The yields for soybeans would need to rise from 42.3 bushels per acre in 2020 to 105.4 bushels per acre in 2024 and stay there until 2053.

Statewide, over the past 20 years, corn yields have increased by 1.95 bushels per year. If 2,492 acres are taken out of production of the county's 348,301, the remaining 345,809 acres would be expected to produce 675,485 bushels more annually just by being more productive on-trend. At 171.1 bushels per year (2020 State Agriculture Overview yield), the 2,492 acres would reduce production by 426,381 bushels. Thus, the increased yields would take just 0.63 years to make up for the acreage taken out of production from the solar project.

Likewise, over the past 20 years, soybean yields have increased by 0.39 bushels per year. If 2,492 acres are taken out of production of the county's 348,301, the remaining 345,809 acres would be expected to produce 133,415 bushels more annually just by being more productive on-trend. At 42.3 bushels per year (2020 State Agriculture Overview yield), the 2,492 acres would reduce production by 105,412 bushels. Thus, the increased yields would take just 0.78 years to make up for the acreage taken out of production from the solar project. Figure 19 – Expected Annual Increase in Production Due to Higher Yields from Corn Versus Expected Decrease in Production from Acreage

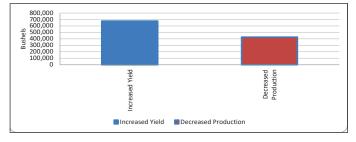
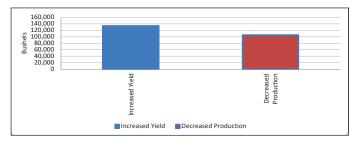



Figure 20 – Expected Annual Increase in Production Due to Higher Yields from Soybeans Versus Expected Decrease in Production from Acreage

The economic analysis of solar PV project presented uses NREL's Jobs and Economic Development Impacts (JEDI) PV Model (PV12.23.16). The JEDI PV Model is an input-output model that measures the spending patterns and location-specific economic structures that reflect expenditures supporting varying levels of employment, income, and output. That is, the JEDI Model takes into account that the output of one industry can be used as an input for another. For example, when a PV system is installed, there are both soft costs consisting of permitting, installation and customer acquisition costs, and hardware costs, of which the PV module is the largest component. The purchase of a module not only increases demand for manufactured components and raw materials, but also supports labor to build and install a module. When a module is purchased from a manufacturing facility, the manufacturer uses some of that money to pay employees. The employees use a portion of their compensation to purchase goods and services within their community. Likewise, when a developer pays workers to install the systems, those workers spend money in the local economy that boosts economic activity and employment in other sectors. The goal of economic impact analysis is to quantify all of those reverberations throughout the local and state economy.

The first JEDI Model was developed in 2002 to demonstrate the economic benefits associated with developing wind farms in the United States. Since then, JEDI models have been developed for biofuels, natural gas, coal, transmission lines and many other forms of energy. These models were created by Marshall Goldberg of MRG & Associates, under contract with the National Renewable Energy Laboratory. The JEDI model utilizes state-specific industry multipliers obtained from IMPLAN (IMpact analysis for PLANning). IMPLAN software and data are managed and updated by the Minnesota IMPLAN Group, Inc., using data collected at federal, state, and local levels. This study analyzes the gross jobs that the new solar energy project development supports and does not analyze the potential loss of jobs due to declines in other forms of electric generation.

The total economic impact can be broken down into three distinct types: direct impacts, indirect impacts, and induced impacts. **Direct impacts** during the construction period refer to the changes that occur in the onsite construction industries in which the direct final demand (i.e., spending on construction labor and services) change is made. Onsite construction-related services include installation labor, engineering, design, and other professional services. Direct impacts during operating years refer to the final demand changes that occur in the onsite spending for the solar operations and maintenance workers.

The initial spending on the construction and operation of the solar PV installation will create a second layer of impacts, referred to as "supply chain impacts" or "indirect impacts." **Indirect impacts** during the construction period consist of changes in inter-industry purchases resulting from the direct final demand changes and include construction spending on materials and PV equipment, as well as other purchases of goods and offsite services. Utility-scale solar PV indirect impacts include PV modules, invertors, tracking systems, cabling, and foundations.

Induced impacts during construction refer to the changes that occur in household spending as household income increases or decreases as a result of the direct and indirect effects of final demand changes. Local spending by employees working directly or indirectly on the Project that receive their paychecks and then spend money in the community is included. The model includes additional local jobs and economic activity that are supported by the purchases of these goods and services.

VII. Economic Impact Results

The economic impact results were derived from detailed project cost estimates supplied by Elk Creek PV I, LLC. In addition, Elk Creek PV I, LLC also estimated the percentages of project materials and labor that will be coming from within Dunn County and the State of Wisconsin.

Two separate JEDI models were produced to show the economic impact of Elk Creek Solar Project. The first JEDI model used the 2019 Dunn County multipliers from IMPLAN. The second JEDI model used the 2019 IMPLAN multipliers for the State of Wisconsin and the same project costs. Because all new multipliers from IMPLAN and specific project cost data from Elk Creek Solar Project are used, the JEDI model serves only to translate the project costs into IMPLAN sectors.

Tables 5-7 show the output from these models. Table 5 lists the total employment impact from Elk Creek Solar Project for Dunn County and the State of Wisconsin. Table 6 shows the impact on total earnings and Table 7 contains the impact on total output.

	Dunn County Jobs	State of Wisconsin Jobs
Construction		
Project Development and Onsite Labor Impacts (direct)	183	293
Module and Supply Chain Impacts (indirect)	116	239
Induced Impacts	26	151
New Local Jobs during Construction	325	683
Operations (Annual)		
Onsite Labor Impacts (direct)	3.9	3.9
Local Revenue and Supply Chain Impacts (indirect)	10.6	11.3
Induced Impacts	3.0	9.2
New Local Long-Term Jobs	17.5	24.4

Table 5 – Total Employment Impact from Elk Creek Solar Project

The results from the JEDI model show significant employment impacts from Elk Creek Solar Project. Employment impacts can be broken down into several different components. Direct jobs created during the construction phase typically last anywhere from 12 to 18 months depending on the size of the project; however, the direct job numbers present in Table 5 from the JEDI model are based on a full time equivalent (FTE) basis for a year. In other words, 1 job = 1 FTE = 2,080 hours worked in a year. A part time or temporary job would constitute only a fraction of a job according to the JEDI model. For example, the JEDI model results show 183 new direct jobs during construction in Dunn County, though the construction of the solar center could involve closer to 366 workers working half-time for a year. Thus, due to the short-term nature of construction projects, the JEDI model often significantly understates the number of people actually hired to work on the project. It is important to keep this fact in mind when looking at the numbers or when reporting the numbers.

As shown in Table 5, new local jobs created or retained during construction total over 325 for Dunn County, and over 683 for the State of Wisconsin. New local long-term jobs created from Elk Creek Solar Project total over 17.5 for Dunn County and over 24.4 for the State of Wisconsin.

Direct jobs created during the operational phase last the life of the solar PV project, typically 20-30 years. Direct construction jobs and operations and maintenance jobs both require highly-skilled workers in the fields of construction, management, and engineering. These well-paid professionals boost economic development in rural communities where new employment opportunities are often welcome due to economic downturns. Accordingly, it is important to not just look at the number of jobs but also the earnings that they produce. Table 6 shows the earnings impacts from Elk Creek Solar Project, which are categorized by construction impacts and operations impacts. The new local earnings during construction totals over \$20.5 million for Dunn County and over \$47.4 million for the State of Wisconsin. The new local long-term earnings totals over \$685 thousand for Dunn County and over \$1.4 million for the State of Wisconsin.

5 1	,	
	Dunn County	State of Wisconsin
Construction		
Project Development and Onsite Earnings Impacts	\$14,815,331	\$26,794,916
Module and Supply Chain Impacts	\$4,770,691	\$12,954,839
Induced Impacts	\$966,434	\$7,690,250
New Local Earnings during Construction	\$20,552,456	\$47,440,004
Operations (Annual)		
Onsite Labor Impacts	\$190,505	\$380,174
Local Revenue and Supply Chain Impacts	\$381,872	\$580,444
Induced Impacts	\$113,535	\$468,719
New Local Long-Term Earnings	\$685,913	\$1,429,336

Table 6 – Total Earnings Impact from Elk Creek Solar Project

Output refers to economic activity or the value of production in the state or local economy. It is an equivalent measure to the Gross Domestic Product, which measures output on a national basis. According to Table 7, the new local output during construction totals over \$36.5 million for Dunn County and over \$93.8 million for the State of Wisconsin. The new local long-term output totals over \$2.5 million for Dunn County and over \$4.0 million for the State of Wisconsin.

Table 7 – Total Output Impact from Elk Creek Solar Project

	Dunn County	State of Wisconsin
Construction		
Project Development and Onsite Jobs Impacts on Output	\$19,693,926	\$35,113,303
Module and Supply Chain Impacts	\$13,280,463	\$35,092,254
Induced Impacts	\$3,566,663	\$23,641,369
New Local Output during Construction	\$36,541,053	\$93,846,926
Operations (Annual)		
Onsite Labor Impacts	\$190,505	\$380,174
Local Revenue and Supply Chain Impacts	\$1,915,919	\$2,242,027
Induced Impacts	\$413,209	\$1,435,265
New Local Long-Term Output	\$2,519,633	\$4,057,465

Solar PV projects, like other generating facilities in Wisconsin, are exempt from property taxes. However, the county and township in which the projects are located will receive increased revenue through the shared revenue utility aid fund. This funding creates a new revenue source for county and township government services and is intended to reimburse the communities for the lost property tax revenue due to the tax exemption. Since utility-scale battery storage is so new, it is unclear if it will be considered under the shared revenue utility aid fund or if it will be taxed separately. In order to be conservative on the economic impacts, we have not included any tax revenue from the battery storage system. This does not mean that we don't believe that battery storage will not pay taxes, rather, it means that more time and experience is needed to correctly quantify the exact tax revenue.

Table 8 details the shared revenue utility aid tax implications of Elk Creek Solar. There are two important assumptions built into the analysis in this table. First, the analysis assumes that the Project has a capacity of 300 MW for taxing purposes. Second, the projections use the MW based payment and incentive payment formulas in the "Wisconsin Shared Revenue Utility Aid Summary" developed by the Wisconsin Department of Revenue.

According to Table 8, the townships will receive \$500,000 annually from Elk Creek Solar and Dunn County will receive \$700,000 annually.

	-	-	Total	Townships	County
MW based Payment			\$600,000	\$200,000	\$400,000
Incentive Payment			\$600,000	\$300,000	\$300,000
Total			\$1,200,000	\$500,000	\$700,000

Table 8 – Illustration of "Utility Aid" Paid by Elk Creek Solar

IX. References

Berkman, M., M. Tran, and W. Ahlgren. 2011. "Economic and Fiscal Impacts of the Desert Sunlight Solar Farm." Prepared for First Solar, Tempe, AZ (US).

Bezdek (2007) Economic and Jobs Impacts of the Renewable Energy and Energy Efficiency Industries: U.S. and Ohio, presented at SOLAR 2007, Cleveland, Ohio, accessed on 11/25/2013 at http://www. greenenergyohio.org/ page.cfm?pageID=1386.

Bhavin, Shah. (2008). Solar Cell Supply Chain. Asia Pacific Equity Research, accessed on 11/1/2013 at http://www.slideshare.net/JackChalice/solar-cellsupplychain.

Census of Agriculture – Wisconsin State and County Data. (1992). United States Department of Agriculture. Accessed on 11/10/20 at https://www. nass.usda.gov/AgCensus/index.php.

Census of Agriculture – Wisconsin State and County Data. (1997). United States Department of Agriculture. Accessed on 11/10/20 at https://www. nass.usda.gov/AgCensus/index.php.

Census of Agriculture – Wisconsin State and County Data. (2002). United States Department of Agriculture. Accessed on 11/10/20 at https://www. nass.usda.gov/AgCensus/index.php.

Census of Agriculture – Wisconsin State and County Data. (2007). United States Department of Agriculture. Accessed on 11/10/20 at https://www. nass.usda.gov/AgCensus/index.php. Census of Agriculture – Wisconsin State and County Data. (2012). United States Department of Agriculture. Accessed on 11/10/20 at https://www. nass.usda.gov/AgCensus/index.php.

Census of Agriculture – Wisconsin State and County Data. (2017). United States Department of Agriculture. Accessed on 11/10/20 at https://www. nass.usda.gov/AgCensus/index.php.

Center for Competitive Florida. (2009). The Positive Economic Impact of Solar Energy on the Sunshine State, Briefings, accessed 11/25/2013 at http://www.floridataxwatch.org/resources/ pdf/04162009SolarEnergy.pdf.

Center for Rural Affairs. 2021. Taxing Utility-Scale Solar Projects in Iowa, accessed 5/21/21 at: https:// www.cfra.org/publications/resource-guide-taxingutility-scale-solar-projects-iowa

Chopra, Sunil and Peter Meindl. (2004). What is a Supply Chain?, Supply Chain Management.

Dixit, Avinash and Robert S. Pindyck. (1994). Investment Under Uncertainty. Princeton University Press: Princeton, NJ.

Gazheli, Ardjan and Luca Di Carato. (2013). Landuse change and solar energy production: a real option approach. Agricultural Finance Review. 73 (3): 507-525.

Jenniches, Simon. 2018. Assessing the Regional Economic Impacts of Renewable Energy Sources, Renewable and Sustainable Energy Reviews, Elsevier, 93, 35-51.

Jin, J.H., Cross, J., Rose, Z., Daebel, E., Verderber, A., and Loomis, D. G. (2016). Financing options and economic impact: distributed generation using solar photovoltaic systems in Normal, Illinois, AIMS Energy, 4(3): 504-516.

Jo J. H., Loomis, D.G., and Aldeman, M. R. (2013). Optimum penetration of utility-scale gridconnected solar photovoltaic systems in Illinois, Renewable Energy, 60, 20-26.

Knapp, Dale (2021). Capturing the Sun: The Economic Benefits of Using Local Workers on Wisconsin Solar Projects, Accessed on 11/29/21 at: https://wisconsininfrastructure.com/wp-content/ uploads/2021/10/Solar-Project-Report-Reduced-1. pdf

Loomis, D.G., Jo, J.H., and Aldeman, M.R., (2016). Economic Impact Potential of Solar Photovoltiacs in Illinois, Renewable Energy, 87, 253-258.

Michaud, G., Khalaf, C., Zimmer, M. & Jenkins, D. (2020). Measuring the economic impacts of utilityscale solar in Ohio. Developed for the Utility Scale Solar Energy Coalition of Ohio (USSEC).

National Renewable Energy Laboratories. (2012). Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview. National Renewable Energy Laboratory.

Overview of the Solar Energy Industry and Supply Chain, accessed on 10/30/2013 at http://www.thecemc.org.

Platt, R.H. (1985). The Farmland Conversion Debate: NALS and Beyond. The Professional Geographer, 37 (4), 433-442.

SEIA. (2016a). Solar Market Insight Report 2016 Q4. Solar Energy Industries Association.

SEIA. (2016b). Solar Spotlight: Virginia. Solar Energy Industries Association.

SEIA. (2019). U.S. Solar Market Insight: Executive Summary, 2018 year in review. March 2019. Solar Energy Industries Association, accessed on 3/20/2019 at http://www2.seia.org/l/139231/2019-03-06/2gb5dw.

Solar Foundation. (2013). An Assessment of the Economic, Revenue, and Societal Impacts of Colorado's Solar Industry. October 2013, accessed on 11/25/2013 at http://solarcommunities.org/ wp-content/uploads/2013/10/ TSF_COSEIA-Econ-Impact-Report_FINAL-VERSION.pdf.

Stone & Associates (2011). Overview of the Solar Energy Industry and Supply Chain, Prepared for the Blue Green Alliance, accessed on 12/13/13 at http:// www.thecemc.org/body/Solar-Overview-for-BGA-Final-Jan-2011.pdf.

Toothman, Jessica, and Aldous, Scott. (2013). How Solar Cells Work, How Stuff Works, accessed on 10/28/2013 at http://science.howstuffworks.com/ environmental/energy/solar-cell.htm.

David G. Loomis Illinois State University Department of Economics Campus Box 4200 Normal, IL 61790-4200 (815) 905-2750 dloomis@ilstu.edu

Education

Doctor of Philosophy, Economics, Temple University, Philadelphia, Pennsylvania, May 1995.

Bachelor of Arts, Mathematics and Honors Economics, Temple University, Magna Cum Laude, May 1985.

Experience

1996-present Illinois State University, Normal, IL Full Professor – Department of Economics (2010-present)

Associate Professor - Department of Economics (2002-2009)

Assistant Professor - Department of Economics (1996-2002)

- Taught Regulatory Economics, Telecommunications Economics and Public Policy, Industrial Organization and Pricing, Individual and Social Choice, Economics of Energy and Public Policy and a Graduate Seminar Course in Electricity, Natural Gas and Telecommunications Issues.
- Supervised as many as 5 graduate students in research projects each semester.
- Served on numerous departmental committees.

1997-present Institute for Regulatory Policy Studies, Normal, IL

Executive Director (2005-present) Co-Director (1997-2005)

- Grew contributing membership from 5 companies to 16 organizations.
- Doubled the number of workshop/training events annually.
- Supervised 2 Directors, Administrative Staff and internship program.
- Developed and implemented state-level workshops concerning regulatory issues related to the electric, natural gas, and telecommunications industries.

2006-2018 Illinois Wind Working Group, Normal, IL Director

- Founded the organization and grew the organizing committee to over 200 key wind stakeholders
- Organized annual wind energy conference with over 400 attendees
- Organized strategic conferences to address critical wind energy issues
- Initiated monthly conference calls to stakeholders
- Devised organizational structure and bylaws

2007-2018 Center for Renewable Energy, Normal, IL Director

- Created founding document approved by the Illinois State University Board of Trustees and Illinois Board of Higher Education.
- Secured over \$150,000 in funding from private companies.
- Hired and supervised 4 professional staff members and supervised 3 faculty members as Associate Directors.
- Reviewed renewable energy manufacturing grant applications for Illinois Department of Commerce and Economic Opportunity for a \$30 million program.
- Created technical "Due Diligence" documents for the Illinois Finance Authority loan program for wind farm projects in Illinois.

2011-present Strategic Economic Research, LLC President

- Performed economic impact analyses on policy initiatives and energy projects such as wind energy, solar energy, natural gas plants and transmission lines at the county and state level.
- Provided expert testimony before state legislative bodies, state public utility commissions, and county boards.
- Wrote telecommunications policy impact report comparing Illinois to other Midwestern states.

1997-2002 International Communications Forecasting Conference Chair

• Expanded Planning Committee with representatives from over 18 different international companies and delivered high quality conference attracting over 500 people over 4 years.

1985-1996 Bell Atlantic, Philadelphia, Pa. Economist - Business Research

- Wrote and taught Applied Business Forecasting multimedia course.
- Developed and documented 25 econometric demand models that were used in regulatory filings.
- Provided statistical and analytic support to regulatory costing studies.
- Served as subject matter expert in switched and special access.
- Administered \$4 million budget including \$1.8 million consulting budget.

Professional Awards and Memberships

2016 Outstanding Cross-Disciplinary Team Research Award with Jin Jo and Matt Aldeman – recognizes exemplary collaborative research conducted by multiple investigators from different disciplines.

2011 Midwestern Regional Wind Advocacy Award from the U. S. Department of Energy's Wind Powering America presented at WindPower 2011

2009 Economics Department Scott M. Elliott Faculty Excellence Award – awarded to faculty who demonstrate excellence in teaching, research and service.

2009 Illinois State University Million Dollar Club – awarded to faculty who have over \$1 million in grants through the university.

2008 Outstanding State Wind Working Group Award from the U. S. Department of Energy's Wind Power America presented at WindPower 2008.

1999 Illinois State University Teaching Initiative Award

Member of the American Economic Association, National Association of Business Economists, International Association for Energy Economics, Institute for Business Forecasters; Institute for International Forecasters, International Telecommunications Society.

Professional Publications

34. Aldeman, M.R., Jo, J.H., and Loomis, D.G. (2018). Quantification of Uncertainty Associated with Wind Assessments of Various Intervals, Transactions of the Canadian Society for Mechanical Engineering, forthcoming.

33. Jin, J.H., Cross, J., Rose, Z., Daebel, E., Verderber, A., and Loomis, D. G. (2016). Financing options and economic impact: distributed generation using solar photovoltaic systems in Normal, Illinois, AIMS Energy, 4(3): 504-516.

32. Loomis, D.G., Hayden, J., Noll, S. and Payne, J.E. (2016). Economic Impact of Wind Energy Development in Illinois, The Journal of Business Valuation and Economic Loss Analysis, 11(1), 3-23.

31. Loomis, D.G., Jo, J.H., and Aldeman, M.R., (2016). Economic Impact Potential of Solar Photovoltiacs in Illinois, Renewable Energy, 87, 253-258.

30. Aldeman, M.R., Jo, J.H., and Loomis, D.G. (2015). The Technical Potential for Wind Energy in Illinois, Energy, 90(1), 1082-1090.

29. Tegen, S., Keyser, D., Flores-Espino, F., Miles, J., Zammit, D. and Loomis, D. (2015). Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios, National Renewable Energy Laboratory Technical Report, NREL/TP-5000-61315, February.

28. Loomis, D. G. and Bowden, N. S. (2013). Nationwide Database of Electric Rates to Become Available, Natural Gas & Electricity, 30 (5), 20-25.

27. Jin, J. H., Loomis, D. G., and Aldeman, M. R. (2013). Optimum penetration of utility-scale gridconnected solar photovoltaic systems in Illinois, Renewable Energy, 60, 20-26.

26. Malm, E., Loomis, D. G., DeFranco, J. (2012). A Campus Technology Choice Model with Incorporated Network Effects: Choosing Between General Use and Campus Systems, International Journal of Computer Trends and Technology, 3(4), 622-629.

25. Chupp, B. A., Hickey, E.A. & Loomis, D. G. (2012). Optimal Wind Portfolios in Illinois, Electricity Journal, 25, 46-56.

24. Hickey, E., Loomis, D. G., & Mohammadi, H. (2012). Forecasting hourly electricity prices using ARMAX-GARCH models: An application to MISO hubs, Energy Economics, 34, 307-315.

23. Theron, S., Winter, J.R, Loomis, D. G., & Spaulding, A. D. (2011). Attitudes Concerning Wind Energy in Central Illinois. Journal of the America Society of Farm Managers and Rural Appraisers, 74, 120-128.

22. Payne, J. E., Loomis, D. G. & Wilson, R. (2011). Residential Natural Gas Demand in Illinois: Evidence from the ARDL Bounds Testing Approach. Journal of Regional Analysis and Policy, 41(2), 138.

21. Loomis, D. G. & Ohler, A. O. (2010). Are Renewable Portfolio Standards A Policy Cure-all? A Case Study of Illinois's Experience. Environmental Law and Policy Review, 35, 135-182. 20. Gil-Alana, L. A., Loomis, D. G., & Payne, J. E. (2010). Does energy consumption by the U.S. electric power sector exhibit long memory behavior ? Energy Policy, 38, 7512-7518.

19. Carlson, J. L., Payne, J. E., & Loomis, D. G. (2010). An assessment of the Economic Impact of the Wind Turbine Supply Chain in Illinois. Electricity Journal, 13, 75-93.

18. Apergis, N., Payne, J. E., & Loomis, D. G. (2010). Are shocks to natural gas consumption transitory or permanent? Energy Policy, 38, 4734-4736.

17. Apergis, N., Payne, J. E., & Loomis, D. G. (2010). Are fluctuations in coal consumption transitory or permanent? Evidence from a panel of U.S. states. Applied Energy, 87, 2424-2426.

16. Hickey, E. A., Carlson, J. L., & Loomis, D. G. (2010). Issues in the determination of the optimal portfolio of electricity supply options. Energy Policy, 38, 2198-2207.

15. Carlson, J. L., & Loomis, D. G. (2008). An assessment of the impact of deregulation on the relative price of electricity in Illinois. Electricity Journal, 21, 60-70.

14. Loomis, D. G., (2008). The telecommunications industry. In H. Bidgoli (Ed.), The handbook of computer networks (pp. 3-19). Hoboken, NJ: John Wiley & Sons.

13. Cox, J. E., Jr., & Loomis, D. G. (2007). A managerial approach to using error measures in the evaluation of forecasting methods. International Journal of Business Research, 7, 143-149.

Professional Publications (continued)

12. Cox, J. E., Jr., & Loomis, D. G. (2006). Improving forecasting through textbooks – a 25 year review. International Journal of Forecasting, 22, 617-624.

11. Swann, C. M., & Loomis, D. G. (2005). Competition in local telecommunications – there's more than you think. Business Economics, 40, 18-28.

10. Swann, C. M., & Loomis, D. G. (2005). Intermodal competition in local telecommunications markets. Information Economics and Policy, 17, 97-113.

9. Swann, C. M., & Loomis, D. G. (2004) Telecommunications demand forecasting with intermodal competition – a multi-equation modeling approach. Telektronikk, 100, 180-184.

8. Cox, J. E., Jr., & Loomis, D. G. (2003). Principles for teaching economic forecasting. International Review of Economics Education, 1, 69-79.

7. Taylor, L. D. & Loomis, D. G. (2002). Forecasting the internet: understanding the explosive growth of data communications. Boston: Kluwer Academic Publishers.

6. Wiedman, J. & Loomis, D. G. (2002). U.S. broadband pricing and alternatives for internet service providers. In D. G. Loomis & L. D. Taylor (Eds.) Boston: Kluwer Academic Publishers.

5. Cox, J. E., Jr. & Loomis, D. G. (2001). Diffusion of forecasting principles: an assessment of books relevant to forecasting. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners (pp. 633-650). Norwell, MA: Kluwer Academic Publishers. 4. Cox, J. E., Jr. & Loomis, D. G. (2000). A course in economic forecasting: rationale and content. Journal of Economics Education, 31, 349-357.

3. Malm, E. & Loomis, D. G. (1999). Active market share: measuring competitiveness in retail energy markets. Utilities Policy, 8, 213-221.

2. Loomis, D. G. (1999). Forecasting of new products and the impact of competition. In D. G. Loomis & L. D. Taylor (Eds.), The future of the telecommunications industry: forecasting and demand analysis. Boston: Kluwer Academic Publishers.

1. Loomis, D. G. (1997). Strategic substitutes and strategic complements with interdependent demands. The Review of Industrial Organization, 12, 781-791.

Expert Testimony

23. McLean County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of Invenergy, LLC, Direct Oral Testimony, January 4, 2018.

22. New Mexico Public Regulation Commission, Case No. 17-00275-UT, Application of Sagamore Wind Energy LLC, on behalf of Invenergy, LLC, Direct Written Testimony filed November 6, 2017.

21. Ohio Power Siting Board, Case No. 17-773-EL-BGN, In the Matter of Hardin Solar Energy LLC for a Certificate of Environmental Compatibility and Public Need to Construct a Solar-Powered Electric Generation Facility in Hardin County, Ohio, on behalf of Invenergy, LLC, Exhibit with Report filed July 5, 2017.

20. Macon County (Illinois) Environmental, Education, Health and Welfare Committee, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of E.ON Energy, Direct Oral Testimony, August 20, 2015.

19. Illinois Commerce Commission, Case No. 15-0277, Oral Cross-examination Testimony on behalf of Grain Belt Express Clean Line LLC appeared before the Commission on August 19, 2015.

18. Macon County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of E.ON Energy, Direct Oral Testimony, August 11, 2015. 17. Illinois Commerce Commission, Case No. 15-0277, Written Rebuttal Testimony on behalf of Grain Belt Express Clean Line LLC filed August 7, 2015.

16. Kankakee County (Illinois) Planning, Zoning, and Agriculture Committee, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of EDF Renewables, Direct Oral Testimony, July 22, 2015.

15. Kankakee County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of EDF Renewables, Direct Oral Testimony, July 13, 2015.

14. Bureau County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of Berkshire Hathaway Energy/Geronimo Energy, Direct Oral Testimony, June 16, 2015.

13. Illinois Commerce Commission, Case No. 15-0277, Written Direct Testimony on behalf of Grain Belt Express Clean Line LLC filed April 10, 2015.

12. Livingston County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of Invenergy, Oral Cross-Examination, December 8-9, 2014.

11. Missouri Public Service Commission, Case No. EA-2014-0207, Oral Cross-examination Testimony on behalf of Grain Belt Express Clean Line LLC appeared before the Commission on November 21, 2014.

Expert Testimony (continued)

10. Livingston County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of Invenergy, Direct Oral Testimony, November 17-19, 2014.

9. Missouri Public Service Commission, Case No. EA-2014-0207, Written Surrebuttal Testimony on behalf of Grain Belt Express Clean Line LLC, filed October 14, 2014.

8. Missouri Public Service Commission, Case No. EA-2014-0207, Written Direct Testimony on behalf of Grain Belt Express Clean Line LLC, filed March 26, 2014.

7. Illinois Commerce Commission, Case No. 12-0560, Oral Cross-examination Testimony on behalf of Rock Island Clean Line LLC appeared before the Commission on December 11, 2013.

6. Illinois Commerce Commission, Case No. 12-0560, Written Rebuttal Testimony on behalf of Rock Island Clean Line LLC filed August 20, 2013.

5. Boone County (Illinois) Board, Examination of Wind Energy Conversion System Ordinance, Direct Testimony and Cross-Examination, April 23, 2013.

4. Illinois Commerce Commission, Case No. 12-0560, Written Direct Testimony on behalf of Rock Island Clean Line LLC filed October 10, 2012. 3. Whiteside County (Illinois) Board and Whiteside County Planning and Zoning Committee, Examination of Wind Energy Conversion System Ordinance, Direct Testimony and Cross-Examination, on behalf of the Center for Renewable Energy, April 12, 2012.

2. State of Illinois Senate Energy and Environment Committee, Direct Testimony and Cross-Examination, on behalf of the Center for Renewable Energy, October 28, 2010.

1. Livingston County (Illinois) Zoning Board of Appeals, Application for Special Use Permit for a Wind Energy Conversion System, on behalf of the Center for Renewable Energy, Direct Testimony and Cross-Examination, July 28, 2010.

Selected Presentations

"Smart Cities and Micro Grids: Cost Recovery Issues," presented September 12,2017 at the National Association of Regulatory Utility Commissioners Staff Subcommittee on Accounting and Finance Meeting, Springfield, IL.

"Cloud Computing: Regulatory Principles and ICC NOI," presented September 11,2017 at the National Association of Regulatory Utility Commissioners Staff Subcommittee on Accounting and Finance Meeting, Springfield, IL.

"Illinois Wind, Illinois Solar and the Illinois Future Energy Jobs Act," presented July 25, 2017 at the Illinois County Assessors Meeting, Normal, IL.

"Illinois Wind, Illinois Solar and the Illinois Future Energy Jobs Act," presented April 21, 2017 at the Illinois Association of County Zoning Officers Meeting, Bloomington, IL.

"Energy Storage Economics and RTOs," presented October 30, 2016 at the Energy Storage Conference at Argonne National Laboratory.

"Wind Energy in Illinois," on October 6, 2016 at the B/N Daybreak Rotary Club, Bloomington, IL.

"Smart Grid for Schools," presented August 17, 2016 to the Ameren External Affairs Meeting, Decatur, IL.

"Solar Energy in Illinois," presented July 28, 2016 at the 3rd Annual K-12 Teachers Clean Energy Workshop, Richland Community College, Decatur, IL "Wind Energy in Illinois," presented July 28, 2016 at the 3rd Annual K-12 Teachers Clean Energy Workshop, Richland Community College, Decatur, IL

"Smart Grid for Schools," presented June 21, 2016 at the ISEIF Grantee and Ameren Meeting, Decatur, IL.

"Costs and Benefits of Renewable Energy," presented November 4, 2015 at the Osher Lifelong Learning Institute at Bradley, University, Peoria, IL.

"Energy Sector Workforce Issues," presented September 17, 2015 at the Illinois Workforce Investment Board, Springfield, IL.

"The Past, Present and Future of Wind Energy in Illinois," presented March 13, 2015 at the Peoria Rotary Club, Peoria, IL.

"Where Are All the Green Jobs?" presented January 28, 2015 at the 2015 Illinois Green Economy Network Sustainability Conference, Normal, IL.

"Teaching Next Generation Energy Concepts with Next Generation Science Standards: Addressing the Critical Need for a More Energy-Literate Workforce," presented September 30, 2014 at the Mathematics and Science Partnerships Program 2014 Conference in Washington, DC.

"National Utility Rate Database," presented October 23, 2013 at Solar Power International, Chicago, IL.

Selected Presentations (continued)

"Potential Economic Impact of Offshore Wind Energy in the Great Lakes," presented May 6, 2013 at WindPower 2013, Chicago, IL.

"Why Illinois? Windy City, Prairie Power," presented May 5, 2013 at WindPower 2013, Chicago, IL.

"National Utility Rate Database," presented January 29, 2013 at the EUEC Conference, Phoenix, AZ.

"Energy Learning Exchange and Green Jobs," presented December 13, 2012 at the TRICON Meeting of Peoria and Tazewell County Counselors, Peoria, IL.

"Potential Economic Impact of Offshore Wind Energy in the Great Lakes," presented November 12, 2012 at the Offshore Wind Jobs and Economic Development Impacts Webinar. "Energy Learning Exchange," presented October 31, 2012 at the Utility Workforce Development Meeting, Chicago, IL.

"Wind Energy in McLean County," presented June 26, 2012 at BN By the Numbers, Normal, IL.

"Wind Energy," presented June 14, 2012 at the Wind for Schools Statewide Teacher Workshop, Normal, IL.

"Economic Impact of Wind Energy in Illinois," presented June 6, 2012 at AWEA's WINDPOWER 2012, Atlanta, GA.

"Trends in Illinois Wind Energy," presented March 6, 2012 at the AWEA Regional Wind Energy Summit – Midwest in Chicago, IL.

"Challenges and New Growth Strategies in the Wind Energy Business," invited plenary session speaker at the Green Revolution Leaders Forum, November 18, 2011 in Seoul, South Korea.

"Overview of the Center for Renewable Energy," presented July 20, 2011 at the University-Industry Consortium Meeting at Illinois Institute of Technology, Chicago, IL.

"Building the Wind Turbine Supply Chain," presented May 11, 2011 at the Supply Chain Growth Conference, Chicago, IL

"Building a Regional Energy Policy for Economic Development," presented April 4, 2011 at the Midwestern Legislative Conference's Economic Development Committee Webinar.

"Wind Energy 101," presented February 7, 2011 at the Wind Power in Central Illinois - A Public Forum, CCNET Renewable Energy Group, Champaign, IL. "Alternative Energy Strategies," presented with Matt Aldeman November 19, 2010 at the Innovation Talent STEM Education Forum, Chicago, IL.

"Siting and Zoning in Illinois," presented November 17, 2010 at the Wind Powering America Webinar.

"What Governor Quinn Should Do about Energy?" presented November 15, 2010 at the Illinois Chamber of Commerce Energy Forum Conference, Chicago, IL.

"Is Wind Energy Development Right for Illinois," presented with Matt Aldeman October 28, 2010 at the Illinois Association of Illinois County Zoning Officials Annual Seminar in Utica, IL.

"Economic Impact of Wind Energy in Illinois," presented July 22, 2010 at the AgriEnergy Conference in Champaign, IL.

"Renewable Energy Major at ISU," presented July 21, 2010 at Green Universities and Colleges Subcommittee Webinar.

"Economics of Wind Energy," presented May 19, 2010 at the U.S. Green Building Council meeting in Chicago, IL.

"Forecasting: A Primer for the Small Business Entrepreneur," presented with James E. Cox, Jr. April 14, 2010 at the Allied Academies' Spring International Conference in New Orleans, LA.

"Are Renewable Portfolio Standards a Policy Cure-All? A Case Study of Illinois' Experience," presented January 30, 2010 at the 2010 William and Mary Environmental Law and Policy Review Symposium in Williamsburg, VA.

"Creating Partnerships between Universities and Industry," presented November 19, 2009, at New Ideas in Educating a Workforce in Renewable Energy and Energy Efficiency in Albany, NY.

"Educating Illinois in Renewable Energy, presented November 14, 2009 at the Illinois Science Teachers Association in Peoria, IL.

"Green Collar Jobs," invited presentation October 14, 2009 at the 2009 Workforce Forum in Peoria, IL.

"The Role of Wind Power in Illinois," presented March 4, 2009 at the Association of Illinois Electric Cooperatives Engineering Seminar in Springfield, IL. "The Economic Benefits of Wind Farms," presented January 30, 2009 at the East Central Illinois Economic Development District Meeting in Champaign, IL.

"Green Collar Jobs in Illinois," presented January 6, 2009 at the Illinois Workforce Investment Board Meeting in Macomb, Illinois.

"Green Collar Jobs: What Lies Ahead for Illinois?" presented August 1, 2008 at the Illinois Employment and Training Association Conference.

"Mapping Broadband Access in Illinois," presented October 16, 2007 at the Rural Telecon '07 conference.

"A Managerial Approach to Using Error Measures to Evaluate Forecasting Methods," presented October 15, 2007 at the International Academy of Business and Economics.

"Dollars and Sense: The Pros and Cons of Renewable Fuel," presented October 18, 2006 at Illinois State University Faculty Lecture Series.

"Broadband Access in Illinois," presented July 28, 2006 at the Illinois Association of Regional Councils Annual Meeting.

"Broadband Access in Illinois," presented November 17, 2005 at the University of Illinois' Connecting the e to Rural Illinois.

Selected Presentations (continued)

"Improving Forecasting Through Textbooks – A 25 Year Review," with James E. Cox, Jr., presented June 14, 2005 at the 25th International Symposium on Forecasting.

"Telecommunications Demand Forecasting with Intermodal Competition, with Christopher Swann, presented April 2, 2004 at the Telecommunications Systems Management Conference 2004.

"Intermodal Competition," with Christopher Swann, presented April 3, 2003 at the Telecommunications Systems Management Conference 2003.

"Intermodal Competition in Local Exchange Markets," with Christopher Swann, presented June 26, 2002 at the 20th Annual International Communications Forecasting Conference.

"Assessing Retail Competition," presented May 23, 2002 at the Institute for Regulatory Policy Studies' Illinois Energy Policy for the 21st Century workshop.

"The Devil in the Details: An Analysis of Default Service and Switching," with Eric Malm presented May 24, 2001 at the 20th Annual Advanced Workshop on Regulation and Competition.

"Forecasting Challenges for U.S. Telecommunications with Local Competition," presented June 28, 1999 at the 19th International Symposium on Forecasting.

"Acceptance of Forecasting Principles in Forecasting Textbooks," presented June 28, 1999 at the 19th International Symposium on Forecasting. "Forecasting Challenges for Telecommunications With Local Competition," presented June 17, 1999 at the 17th Annual International Communications Forecasting Conference.

"Measures of Market Competitiveness in Deregulating Industries," with Eric Malm, presented May 28, 1999 at the 18th Annual Advanced Workshop on Regulation and Competition.

"Trends in Telecommunications Forecasting and the Impact of Deregulation," Proceedings of EPRI's 11th Forecasting Symposium, 1998.

"Forecasting in a Competitive Age: Utilizing Macroeconomic Forecasts to Accurately Predict the Demand for Services," invited speaker, Institute for International Research Conference, September 29, 1997.

"Regulatory Fairness and Local Competition Pricing," presented May 30, 1996 at the 15th Annual Advanced Workshop in Regulation and Public Utility Economics.

"Optimal Pricing For a Regulated Monopolist Facing New Competition: The Case of Bell Atlantic Special Access Demand," presented May 28, 1992 at the Rutgers Advanced Workshop in Regulation and Public Utility Economics.

Grants

"SmartGrid for Schools 2018 and Energy Challenge," with William Hunter, Illinois Science and Energy Innovation Foundation, RSP Award # A15-0092-002 - extended, January 2017, \$300,000.

"Energy Learning Exchange - Implementing Nationally Recognized Energy Curriculum and Credentials in Illinois," Northern Illinois University, RSP Award # A17-0098, February, 2017, \$13,000.

"SmartGrid for Schools 2017 and Energy Challenge," with William Hunter, Illinois Science and Energy Innovation Foundation, RSP Award # A15-0092-002 - extended, January 2017, \$350,000.

"Illinois Jobs Project," University of California Berkeley, RSP Award # A16-0148, August, 2016, \$10,000.

"Energy Workforce Ready Through Building Performance Analysis," Illinois Department of Commerce and Economic Opportunity through the Department of Labor, RSP # A16-0139, June, 2016, \$328,000 (grant was de-obligated before completion).

"SmartGrid for Schools 2016 and Smart Appliance Challenge," with William Hunter, Brad Christenson and Jeritt Williams, Illinois Science and Energy Innovation Foundation, RSP Award # A15-0092-002, January 2016, \$450,000.

"SmartGrid for Schools 2015," with William Hunter and Matt Aldeman, Illinois Science and Energy Innovation Foundation, RSP Award # A15-0092-001, February 2015, \$400,000. "Economic Impact of Nuclear Plant Closings: A Response to HR 1146," Illinois Department of Economic Opportunity, RSP Award # 14-025001 amended, January, 2015, \$22,000.

"Partnership with Midwest Renewable Energy Association for Solar Market Pathways" with Missy Nergard and Jin Jo, U.S. Department of Energy Award Number DE-EE0006910, October, 2014, \$109,469 (ISU Award amount).

"Renewable Energy for Schools," with Matt Aldeman and Jin Jo, Illinois Department of Commerce and Economic Opportunity, Award Number 14-025001, June, 2014, \$130,001.

"SmartGrid for Schools 2014," with William Hunter and Matt Aldeman, Illinois Science and Energy Innovation Foundation, RSP # 14B116, March 2014, \$451,701.

"WINDPOWER 2014 Conference Exhibit," Illinois Department of Commerce and Economic Opportunity, RSP #14C167, March, 2014, \$95,000.

"Lake Michigan Offshore Wind Energy Buoy," with Matt Aldeman, Illinois Clean Energy Community Foundation, Request ID 6435, November, 2013, \$90,000.

"Teaching Next Generation Energy Concepts with Next Generation Science Standards," with William Hunter, Matt Aldeman and Amy Bloom, Illinois State Board of Education, RSP # 13B170A, October, 2013, second year, \$159,954; amended to \$223,914.

Grants (continued)

"Solar for Schools," with Matt Aldeman, Illinois Green Economy Network, RSP # 13C280, August, 2013, \$66,072.

"Energy Learning Exchange Implementation Grant," with William Hunter and Matt Aldeman, Illinois Department of Commerce and Economic Opportunity, Award Number 13-052003, June, 2013, \$350,000.

"Teaching Next Generation Energy Concepts with Next Generation Science Standards," with William Hunter, Matt Aldeman and Amy Bloom, Illinois State Board of Education, RSP # 13B170, April, 2013, \$159,901.

"Illinois Sustainability Education SEP," Illinois Department of Commerce and Economic Opportunity, Award Number 08-431006, March, 2013, \$225,000.

"Illinois Pathways Energy Learning Exchange Planning Grant," with William Hunter and Matt Aldeman, Illinois State Board of Education (Source: U.S. Department of Education), RSP # 13A007, December, 2012, \$50,000.

"Illinois Sustainability Education SEP," Illinois Department of Commerce and Economic Opportunity, Award Number 08-431005, June 2011, amended March, 2012, \$98,911.

"Wind for Schools Education and Outreach," with Matt Aldeman, Illinois Department of Commerce and Economic Opportunity, Award Number 11-025001, amended February, 2012, \$111,752.

"A Proposal to Support Solar Energy Potential and

Job Creation for the State of Illinois Focused on Large Scale Photovoltaic System," with Jin Jo (lead PI), Illinois Department of Commerce and Economic Opportunity, Award Number 12-025001, January 2012, \$135,000.

"National Database of Utility Rates and Rate Structure," U.S. Department of Energy, Award Number DE-EE0005350TDD, 2011-2014, \$850,000.

"Illinois Sustainability Education SEP," Illinois Department of Commerce and Economic Opportunity, Award Number 08-431005, June 2011, \$75,000.

"Illinois Pathways Energy Learning Exchange Planning Grant," with William Hunter and Matt Aldeman, Illinois State Board of Education (Source: U.S. Department of Education), RSP # 13A007, December, 2012, \$50,000.

"Illinois Sustainability Education SEP," Illinois Department of Commerce and Economic Opportunity, Award Number 08-431005, June 2011, amended March, 2012, \$98,911.

"Wind for Schools Education and Outreach," with Matt Aldeman, Illinois Department of Commerce and Economic Opportunity, Award Number 11-025001, amended February, 2012, \$111,752.

"A Proposal to Support Solar Energy Potential and Job Creation for the State of Illinois Focused on Large Scale Photovoltaic System," with Jin Jo (lead PI), Illinois Department of Commerce and Economic Opportunity, Award Number 12-025001, January 2012, \$135,000.

"National Database of Utility Rates and Rate Structure," U.S. Department of Energy, Award Number DE-EE0005350TDD, 2011-2014, \$850,000.

"Illinois Sustainability Education SEP," Illinois Department of Commerce and Economic Opportunity, Award Number 08-431005, June 2011, \$75,000.

"Wind for Schools Education and Outreach," with Matt Aldeman, Illinois Department of Commerce and Economic Opportunity, Award Number 11-025001, March 2011, \$190,818.

"Using Informal Science Education to Increase Public Knowledge of Wind Energy in Illinois," with Amy Bloom and Matt Aldeman, Scott Elliott Cross-Disciplinary Grant Program, February 2011, \$13,713.

"Wind Turbine Market Research," with Matt Aldeman, Illinois Manufacturers Extension Center, May, 2010, \$4,000.

"Petco Resource Assessment," with Matt Aldeman, Petco Petroleum Co., April, 2010 amended August 2010 \$34,000; original amount \$18,000.

"Wind for Schools Education and Outreach," with Anthony Lornbach and Matt Aldeman, Scott Elliott Cross-Disciplinary Grant Program, February, 2010, \$13,635.

"IGA IFA/ISU Wind Due Diligence," Illinois Finance Authority, November, 2009, \$8,580 amended December 2009; original amount \$2,860. "Green Industry Business Development Program, with the Shaw Group and Illinois Manufacturers Extension Center, Illinois Department of Commerce and Economic Opportunity, Award Number 09-021007, August 2009, \$245,000.

"Wind Turbine Workshop Support," Illinois Department of Commerce and Economic Opportunity, June 2009, \$14,900.

"Illinois Wind Workers Group," with Randy Winter, U.S. Department of Energy, Award Number DE-EE0000507, 2009-2011, \$107,941.

"Wind Turbine Supply Chain Study," with J. Lon Carlson and James E. Payne, Illinois Department of Commerce and Economic Opportunity, Award Number 09-021003, April 2009, \$125,000.

"Renewable Energy Team Travel to American Wind Energy Association WindPower 2009 Conference, Center for Mathematics, Science and Technology, February 2009, \$3,005.

"Renewable Energy Educational Lab Equipment," with Randy Winter and David Kennell, Illinois Clean Energy Community Foundation (peerreviewed), February, 2008, \$232,600.

"Proposal for New Certificate Program in Electricity, Natural Gas and Telecommunications Economics," with James E. Payne, Extended Learning Program Grant, April, 2007, \$29,600.

Grants (continued)

"Illinois Broadband Mapping Study," with J. Lon Carlson and Rajeev Goel, Illinois Department of Commerce and Economic Opportunity, Award Number 06-205008, 2006-2007, \$75,000.

"Illinois Wind Energy Education and Outreach Project," with David Kennell and Randy Winter, U.S. Department of Energy, Award Number DE-FG36-06GO86091, 2006-2010, \$990,000.

"Wind Turbine Installation at Illinois State University Farm," with Doug Kingman and David Kennell, Illinois Clean Energy Community Foundation (peerreviewed), May, 2004, \$500,000.

"Illinois State University Wind Measurement Project," Doug Kingman and David Kennell, Illinois Clean Energy Community Foundation (peer-reviewed), with August, 2003, \$40,000.

"Illinois State University Wind Measurement Project," with Doug Kingman and David Kennell, NEG Micon matching contribution, August, 2003, \$65,000.

"Distance Learning Technology Program," Illinois State University Faculty Technology Support Services, Summer 2002, \$3,000.

"Providing an Understanding of Telecommunications Technology By Incorporating Multimedia into Economics 235," Instructional Technology Development Grant (peer-reviewed), January 15, 2001, \$1,400.

"Using Real Presenter to create a virtual tour of GTE's Central Office," with Jack Chizmar, Instructional Technology Literacy Mentoring Project Grant (peerreviewed), January 15, 2001, \$1,000. "An Empirical Study of Telecommunications Industry Forecasting Practices," with James E. Cox, College of Business University Research Grant (peer-reviewed), Summer, 1999, \$6,000.

"Ownership Form and the Efficiency of Electric Utilities: A Meta-Analytic Review" with L. Dean Hiebert, Institute for Regulatory Policy Studies research grant (peer-reviewed), August 1998, \$6,000.

Total Grants: \$7,740,953

External Funding

Corporate Funding for Institute for Regulatory Policy Studies, Ameren (\$7,500), Aqua Illinois (\$7,500); Commonwealth Edison (\$7,500); Exelon (\$7,500); Illinois American Water (\$7,500); Midcontinent ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2017, \$67,500 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2017, \$18,342.

Corporate Funding for Institute for Regulatory Policy Studies, Ameren (\$7,500), Aqua Illinois (\$7,500); Commonwealth Edison (\$7,500); Exelon (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midcontinent ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2017, \$75,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2016, \$19,667.

Corporate Funding for Energy Learning Exchange, Calendar Year 2016, \$53,000.

Corporate Funding for Institute for Regulatory Policy Studies, Ameren (\$7,500), Aqua Illinois (\$7,500); Commonwealth Edison (\$7,500); Exelon/ Constellation NewEnergy (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midcontinent ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Utilities, Inc. (\$7,500) Fiscal Year 2016, \$82,500 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2015, \$15,897.

Corporate Funding for Institute for Regulatory Policy Studies, Ameren (\$7,500), Alliance Pipeline (\$7,500); Aqua Illinois (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Exelon/ Constellation NewEnergy (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midcontinent ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2015, \$90,000 total.

Corporate Funding for Energy Learning Exchange, Calendar Year 2014, \$55,000.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2014, \$12,381.

External Funding (continued)

Corporate Funding for Institute for Regulatory Policy Studies, Ameren (\$7,500), Alliance Pipeline (\$7,500); Aqua Illinois (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Constellation NewEnergy (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midwest Energy Efficiency Alliance (\$4,500); Midwest Generation (\$7,500); MidWest ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2014, \$102,000 total.

Corporate Funding for Energy Learning Exchange, Calendar Year 2013, \$53,000.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2013, \$17,097.

Corporate Funding for Institute for Regulatory Policy Studies, Ameren (\$7,500), Alliance Pipeline (\$7,500); Aqua Illinois (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Constellation NewEnergy (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midwest Generation (\$7,500); MidWest ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2013, \$97,500 total.

Corporate Funding for Illinois Wind Working Group, Calendar Year 2012, \$29,325.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2012, \$16,060. Corporate Funding for Institute for Regulatory Policy Studies, Alliance Pipeline (\$7,500); Aqua Illinois (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Constellation NewEnergy (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midwest Generation (\$7,500); MidWest ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2012, \$90,000 total.

Corporate Funding for Illinois Wind Working Group, Calendar Year 2011, \$57,005.

Workshop Surplus for Institute for Regulatory Policy Studies, with Adrienne Ohler, Fiscal Year 2011, \$13,562.

Corporate Funding for Institute for Regulatory Policy Studies, Alliance Pipeline (\$7,500); Aqua Illinois (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Constellation NewEnergy (\$7,500); Illinois American Water (\$7,500) ITC Holdings (\$7,500); Midwest Generation (\$7,500); MidWest ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2011, \$90,000 total.

Corporate Funding for Center for Renewable Energy, Calendar Year 2010, \$50,000.

Corporate Funding for Illinois Wind Working Group, Calendar Year 2010, \$49,000.

Workshop Surplus for Institute for Regulatory Policy Studies, with Lon Carlson, Fiscal Year 2010, \$17,759.

Corporate Funding for Institute for Regulatory Policy Studies, Alliance Pipeline (\$7,500); Ameren (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Constellation NewEnergy (\$7,500); ITC Holdings (\$7,500); Midwest Generation (\$7,500); MidWest ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2010, \$82,500 total.

Corporate Funding for Illinois Wind Working Group, Calendar Year 2009, \$57,140.

Workshop Surplus for Institute for Regulatory Policy Studies, with Lon Carlson, Fiscal Year 2009, \$21,988.

Corporate Funding for Institute for Regulatory Policy Studies, Alliance Pipeline (\$7,500); Ameren (\$7,500); AT&T (\$7,500);Commonwealth Edison (\$7,500); Constellation NewEnergy (\$7,500); MidAmerican Energy (\$7,500); Midwest Generation (\$7,500); MidWest ISO (\$7,500); NICOR Energy (\$7,500); People Gas Light and Coke (\$7,500); PJM Interconnect (\$7,500); Fiscal Year 2009, \$82,500 total.

Corporate Funding for Center for Renewable Energy, Calendar Year 2008, \$157,500.

Corporate Funding for Illinois Wind Working Group, Calendar Year 2008, \$38,500.

Workshop Surplus for Institute for Regulatory Policy Studies, with Lon Carlson, Fiscal Year 2008, \$28,489. Corporate Funding for Institute for Regulatory Policy Studies, Alliance Pipeline (\$5,000); Ameren (\$5,000); AT&T (\$5,000);Commonwealth Edison (\$5,000); Constellation NewEnergy (\$5,000); MidAmerican Energy (\$5,000); Midwest Generation (\$5,000); MidWest ISO (\$5,000); NICOR Energy (\$5,000); Peabody Energy (\$5,000), People Gas Light and Coke (\$5,000); PJM Interconnect (\$5,000); Fiscal Year 2008, \$60,000 total.

Corporate Funding for Illinois Wind Working Group, Calendar Year 2007, \$16,250.

Workshop Surplus for Institute for Regulatory Policy Studies, with Lon Carlson, Fiscal Year 2007, \$19,403.

Corporate Funding for Institute for Regulatory Policy Studies, AARP (\$3,000), Alliance Pipeline (\$5,000), Ameren (\$5,000); Citizens Utility Board (\$5,000); Commonwealth Edison (\$5,000); Constellation NewEnergy (\$5,000); MidAmerican Energy (\$5,000); Midwest Generation (\$5,000); MidWest ISO (\$5,000); NICOR Energy (\$5,000); Peabody Energy (\$5,000), People Gas Light and Coke (\$5,000); PJM Interconnect (\$5,000); SBC (\$5,000); Verizon (\$5,000); Fiscal Year 2007, \$73,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with Lon Carlson, Fiscal Year 2006, \$13,360.

External Funding (continued)

Corporate Funding for Institute for Regulatory Policy Studies, AARP (\$1,500), Alliance Pipeline (\$2,500), Ameren (\$5,000); Citizens Utility Board (\$5,000); Commonwealth Edison (\$5,000); Constellation NewEnergy (\$5,000); DTE Energy (\$5,000); MidAmerican Energy (\$5,000); Midwest Generation (\$5,000); MidWest ISO (\$5,000); NICOR Energy (\$5,000); Peabody Energy (\$2,500), People Gas Light and Coke (\$5,000); PJM Interconnect (\$5,000); SBC (\$5,000); Verizon (\$5,000); Fiscal Year 2006, \$71,500 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Fiscal Year 2005, \$12,916.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); Citizens Utility Board (\$5,000); Commonwealth Edison (\$5,000); Constellation NewEnergy (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); Midwest Generation (\$5,000); MidWest ISO (\$5,000); NICOR Energy (\$5,000); People Gas Light and Coke (\$5,000); PJM Interconnect (\$5,000); SBC (\$2,500); Verizon (\$2,500); Fiscal Year 2005, \$60,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Fiscal Year 2004, \$17,515.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); Commonwealth Edison (\$5,000); Constellation NewEnergy (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); Midwest Generation (\$5,000); NICOR Energy (\$5,000); People Gas Light and Coke (\$5,000); PJM Interconnect (\$5,000); Fiscal Year 2004, \$45,000 total. Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Fiscal Year 2003, \$8,300.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); AT&T (\$2,500); Commonwealth Edison (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); NICOR Energy (\$5,000); People Gas Light and Coke (\$5,000); Fiscal Year 2003, \$32,500 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Calendar Year 2002, \$15,700.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$2,500); AT&T (\$5,000); Commonwealth Edison (\$2,500); Illinois Power (\$2,500); MidAmerican Energy (\$2,500); NICOR Energy (\$2,500); People Gas Light and Coke (\$2,500); Calendar Year 2002, \$17,500 total.

Corporate Funding for International Communications Forecasting Conference, National Economic Research Associates (\$10,000); Taylor Nelson Sofres Telecoms (\$10,000); Calendar Year 2002, \$20,000 total

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); AT&T (\$5,000); Commonwealth Edison (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); NICOR Energy (\$5,000); People Gas Light and Coke (\$5,000); Calendar Year 2001, \$35,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Calendar Year 2001, \$19,400.

Corporate Funding for International Communications Forecasting Conference, National Economic Research Associates (\$10,000); Taylor Nelson Sofres Telecoms (\$10,000); SAS Institute (\$10,000); Calendar Year 2001, \$30,000 total.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); AT&T (\$5,000); Commonwealth Edison (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); NICOR Energy (\$5,000); People Gas Light and Coke (\$5,000); Calendar Year 2000, \$35,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Calendar Year 2000, \$20,270.

Corporate Funding for International Communications Forecasting Conference, National Economic Research Associates (\$10,000); Taylor Nelson Sofres Telecoms (\$10,000); Calendar Year 2000, \$20,000 total.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); AT&T (\$5,000); Commonwealth Edison (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); NICOR Energy (\$5,000); People Gas Light and Coke (\$5,000); Calendar Year 1999, \$35,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Calendar Year 1999, \$10,520.

Corporate Funding for International Communications Forecasting Conference, National Economic Research Associates (\$10,000); PNR Associates (\$10,000); Calendar Year 1999, \$20,000 total. Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); CILCO (\$5,000); Commonwealth Edison (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); People Gas Light and Coke (\$5,000); Calendar Year 1998, \$30,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Calendar Year 1998, \$44,334.

Corporate Funding for International Communications Forecasting Conference, National Economic Research Associates (\$10,000); PNR Associates (\$10,000); Calendar Year 1998, \$20,000 total.

Corporate Funding for Institute for Regulatory Policy Studies, with L. Dean Hiebert, AmerenCIPS (\$5,000); CILCO (\$5,000); Commonwealth Edison (\$5,000); Illinois Power (\$5,000); MidAmerican Energy (\$5,000); People Gas Light and Coke (\$5,000); Calendar Year 1997, \$30,000 total.

Workshop Surplus for Institute for Regulatory Policy Studies, with L. Dean Hiebert, Calendar Year 1997, \$19,717.

Total External Funding: \$2,492,397

by David G. Loomis Strategic Economic Research, LLC strategiceconomic.com 815-905-2750

