BEFORE THE
PUBLIC SERVICE COMMISSION OF WISCONSIN

Application for a Certificate of Public
Convenience and Necessity of Ursa Solar,
LLC to Construct the Langdon Mills Solar
Electric Generation Facility in the Towns of
Courtland and Springvale, Columbia
County, Wisconsin

Docket No. 9818-CE-100

DIRECT TESTIMONY OF MICHAEL J. VICKERMAN
ON BEHALF OF RENEW WISCONSIN

Q. Please state your name and business address.
A. My name is Michael J. Vickerman, and my business address is 214 N. Hamilton
St., Suite 300, Madison, WI 53703.

Q. By whom are you employed, and in what capacity?
A. I am employed by RENEW Wisconsin (RENEW). My current position is Clean
Energy Deployment Manager.

Q. On whose behalf are you testifying?
A. I am testifying on behalf of RENEW.

Q. Please describe your educational background.
A. I have a Bachelors of Arts degree in History and Art History from the University
of Wisconsin-Madison.

Q. Please describe your work experience.
A. I began working for RENEW Wisconsin in October 1991 as its Advance Plan 6
intervention manager. I became RENEW’s Executive Director in 1994, and
served in that capacity until 2012. I continued working for RENEW as its Policy Director, a position I held until early 2023. In my current capacity as RENEW’s Clean Energy Deployment Manager, I engage in regulatory and permitting proceedings at the state and local level involving either approvals of individual renewable generation projects or broader issues affecting clean energy development across the state. My professional qualifications are further summarized in Ex.-RENEW-Vickerman-1.

Q. Please describe RENEW.

A. RENEW is a domestic, nonprofit corporation headquartered in Madison that works to advance the renewable energy goals adopted by the State of Wisconsin over the years. Since its founding in 1991, RENEW has worked to increase access to and development of renewable energy sources in Wisconsin to power homes, businesses, and vehicles. To that end, RENEW formulates and advocates for policies and programs to expand the use of solar power, wind power, renewable natural gas, local hydropower, ground-source and air-source heat pumps, energy storage, and electric vehicles.

Q. How does RENEW advance solar power as a general policy matter?

A. In recent years, solar generation has emerged from the margins of the electric power landscape to become a reliable and cost-effective energy resource for a wide variety of applications and circumstances. Solar power’s emergence owes much to its remarkable scalability, unmatched by any other generation source today. Many RENEW members are active in solar electric development. They include contractors and consultants specializing in behind-the-meter installations.
for retail customers, solar arrays directly feeding utility distribution systems, and
large-scale solar power plants supplying multiple electric providers. To a degree
unmatched by any other state-based organization, RENEW works to increase the
accessibility of solar energy, in all sizes and configurations, to all citizens of the
state. In furtherance of that aim, RENEW became the Wisconsin state chapter of

Q. **What is the purpose of your testimony in this proceeding?**

A. The principal purpose of my direct testimony is to discuss the importance of the
Langdon Mills Solar and Battery Energy Storage project (Langdon Mills Solar),
proposed by Ursa Solar. As a utility-scale source of zero-carbon renewable
electricity, Langdon Mills Solar is yet another example of the ongoing transition
to replace older fossil generation sources with in-state renewable generation. This
transition is, in RENEW’s view, very much aligned with the public interest. I will
also provide an estimate of the project’s likely impact on carbon dioxide
emissions attributable to Wisconsin’s electric power sector.

Q. **Have you prepared any exhibits with your direct testimony?**

A. Yes. In addition to Ex.-RENEW-Vickerman-1 referenced above, I am sponsoring
Ex.-RENEW-Vickerman-2, RENEW’s Solar Project Tracker dated March 2023.

Q. **Please describe the advances that utility-scale solar power has achieved in
recent years as a base generation source in Wisconsin.**

A. As a component of our public education efforts, RENEW tracks solar
development activity occurring in Wisconsin and periodically publishes updates
on our website. As indicated in Ex.-RENEW-Vickerman-2, the state is in the
early stages of a significant buildout of solar generating capacity. Though the
scale of the buildout was modest at first, it has been accelerating since 2020. The
largest category of solar power projects—those totaling a minimum of 100
megawatts (MW) of capacity—require a Certificate of Public Convenience and
Necessity (CPCN) issued by the Public Service Commission (Commission)
before they can proceed to construction. From April 2019 through March 2023,
the Commission approved 13 CPCN applications accounting for 2,399 MW of
solar generating capacity. Several of these solar project proposals are paired with
battery energy storage systems (BESS) designed to provide grid support during
the late afternoon and early evening hours. As of today, three of the solar farms
that received CPCN approval—Two Creeks, Point Beach, and Wood County—
are fully operational, totaling 400 MW. Over the next 14 months, four additional
solar plants with CPCN permits—Badger Hollow (150 MW), Onion River (150
MW), Paris (200 MW), and Springfield (100 MW)—should become fully
operational. All told, the seven CPCN-level solar plants that will be operational
by the end of 2023 will account for 1,000 MW of capacity. In addition, the
Commission approved two applications from Wisconsin Power and Light to
construct and operate eight solar plants that had already received siting approval
from local jurisdictions. All eight plants, totaling 489 MW of capacity, are
expected to be operational by the close of 2023. When distributed solar generation
projects are added to the mix, Wisconsin could see more than 1,500 MW of new
solar generation capacity come online before the end of this year.
Q. How does Langdon Mills Solar fit into the solar and storage buildout underway in Wisconsin?

A. With the recent approval of Portage Solar, there are now six proposed solar generation projects presently undergoing review via the Commission’s CPCN process, including Langdon Mills Solar. The other five are Saratoga (9816-CE-100), Northern Prairie (9815-CE-100), High Noon Solar (9814-CE-100), Elk Creek Solar (9819-CE-100), and Silver Maple (9813-CE-100). If approved, the combined solar capacity of these projects would amount to 1,251 MW (see Table 1 on page 6), with Langdon Mills Solar accounting for 200 MW of that total. All in all, I estimate that there are approximately 4,284.8 MW of utility-scale or front-of-meter solar generation projects in Wisconsin today that are either (1) operational, (2) under construction, (3) permitted but not yet under construction, or (4) under siting review by either the Commission or a local jurisdiction.
Table 1

Solar (and storage) projects undergoing Commission review as of March 2023

<table>
<thead>
<tr>
<th>Project</th>
<th>Solar Capacity (in MW(AC))</th>
<th>BESS Capacity (AC capacity except where noted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saratoga</td>
<td>150</td>
<td>52.5 MW/210 MWh</td>
</tr>
<tr>
<td>Northern Prairie</td>
<td>101</td>
<td>None</td>
</tr>
<tr>
<td>High Noon</td>
<td>300</td>
<td>165 MW/660 MWh</td>
</tr>
<tr>
<td>Langdon Mills</td>
<td>200</td>
<td>50 MW/200 MWh</td>
</tr>
<tr>
<td>Elk Creek</td>
<td>300 (at POI)</td>
<td>76 MW(DC)/304 MWh</td>
</tr>
<tr>
<td>Silver Maple</td>
<td>200</td>
<td>None</td>
</tr>
<tr>
<td>Total</td>
<td>1,251</td>
<td>365 MW(AC)/1,420 MWh + 76 MW(DC)</td>
</tr>
</tbody>
</table>

Q. How important are in-state sources of utility-scale solar power to the broader policy aims of Wisconsin’s energy policy?

A. In RENEW’s view, the solar projects listed in Ex.-RENEW-Vickerman-2 will serve the public interest by tilting Wisconsin’s renewable generation portfolio, now weighted in favor of out-of-state sources, firmly in the direction of in-state facilities. In docket 5-RF-2021, the Commission staff’s 2021 Renewable Portfolio Standard Report contains a breakdown of 2021 renewable generation between in-state and out-of-state sources.\(^1\) In all of 2021, Wisconsin electric providers

\(^1\) See Commission Memorandum, Appendix E, PSC REF# 441273.
derived only 39% of their supplies of renewable electricity—two out of every five
MWh—from sources located in Wisconsin, while a remarkable 61% of the
renewable electricity sold in Wisconsin that year originated from another state.
Indeed, according to the same report, more than half (55%) of Wisconsin’s
renewable electricity came from windpower projects located in Illinois, Iowa,
Minnesota and South Dakota, some of which are owned by or are operating under
contract to Wisconsin electric providers. This outsourcing of renewable power
results in the export of manufacturing opportunities, local government revenues,
landowner income, and workforce participation that could otherwise yield direct
and indirect economic benefits to Wisconsin communities.

The emergence of solar energy as a reliable, low-cost source of electric
power presents an opportunity to build a geographically dispersed portfolio of
zero-emission plants within Wisconsin’s borders. As noted earlier, this portfolio
has already started to take shape. In south-central Wisconsin, where Langdon
Mills Solar would be located, there is sufficient land and transmission
infrastructure to accommodate additional bulk sources of solar power, whereupon
they would cost-effectively serve rural and urban communities across the state.
Solar power at this scale and in this region can contribute substantially to the
generation transition underway to fill in the capacity holes created by retiring
fossil generating plants planned for later this decade.

2 See id.
Q. How much electricity do you estimate will be generated by this group of projects over their first 10 years of operation?

A. In calculating the future output from these projects, I must make several assumptions regarding their productivity. For the first 29 projects listed in Ex.-RENEW-Vickerman-2, I used a capacity factor of 23%, even though the applications for a substantial portion of these projects assumed higher capacity factors. While that capacity factor may seem conservative, it was selected to internalize the slight degradation factor that will occur over the course of a solar panel’s operating life. That degradation factor is assumed to be 0.5%/year, or 5% over a 10-year period. That said, all of the 29 projects in the first group except the 417 kW project serving Superior Water, Light and Power will utilize single-axis tracking devices to maximize the capture of the solar resource in the early morning and late afternoon hours. Most of these projects will make use of bifacial panels, which should result in increased output in the winter months relative to fixed-mount arrays. With these assumptions in mind, the combined output from the 3,520.9 MW of capacity represented in that group should average 7,093,909 megawatt-hours (MWh) per annum over their first 10 years of operation, for a total of 70,939,090 MWh.

For the second group of projects (Nos. 30-58), I reduced the capacity factor to 22.75% to account for the handful of installations in operation that rely on fixed-mount racking, which is slightly less productive relative to projects that use single-axis tracking devices. However, since most of the solar capacity represented in the second group operates with single-axis tracking devices, the
reduction in aggregate output should be slight. With that assumption in mind, the combined output from the 763.9 MW of capacity represented in the second group should average 1,522,376 MWh per annum over the projects’ first 10 years of operation, for a total of 15,223,760 MWh.

When the subtotals from each group are added together, the combined total should average 8,616,285 MWh per year over the projects’ first 10 years of operation.

Q. What percentage of Wisconsin power generation do those numbers represent?

A. According to the most recent State Electricity Profile of Wisconsin published by the U.S. Energy Information Administration (EIA), the state’s electricity sector generated 64,276,480 MWh in 2021. When the estimated 8,402,716 MWh of solar generation is divided by the statewide electric generation total in 2021, that increment of solar power would have accounted for 13% of the electricity produced in Wisconsin that year.

Q. What percentage of Wisconsin electricity sales do those numbers represent?

A. A comparison of the estimated output from the solar projects listed in Ex.-RENEW-Vickerman-2 to Wisconsin electricity sales yields a similar though smaller percentage, as Wisconsin is a net importer of electricity. According to the Commission staff’s Renewable Portfolio Standard Report for 2021, annual retail sales reported by Wisconsin electricity providers over the 2018-2020 period

3 See Wisconsin Electricity Profile 2021, Energy Information Administration (https://www.eia.gov/electricity/state/Wisconsin/).
4 See Commission Memorandum, Appendix C-4, PSC REF # 441273.
averaged 69,181,062 MWh. When the estimated 8,402,716 MWh of solar generation is divided by the electricity sales average cited above, that increment of solar capacity would have accounted for 12% of the electricity sold in the state of Wisconsin during that three-year period.

To put the above numbers in perspective, in-state solar generation accounted for 0.5% of total electricity sales in Wisconsin in 2021 (364,283 MWh out of 69,537,075 MWh). These numbers also appear in the Commission staff’s 2021 Renewable Portfolio Standard Report.5

Q. What is your estimate of Langdon Mills Solar’s expected contribution to that total?

A. To estimate Langdon Mills Solar’s output over its first 10 years, I used a capacity factor of 21%, consistent with the estimate contained in Langdon Mills Solar’s application (Ex.-Ursa Solar-Application-Application: Page 28). Operating at a 21% capacity factor, Langdon Mills Solar would produce an average of 368,000 MWh/year over the first 10 years of its operating life, accounting for approximately 4.3% of the solar generation represented by the 58 projects listed in Ex.-RENEW-Vickerman-2.

Q. Does the EIA report emissions data attributable to Wisconsin’s electricity sector?

A. Yes. EIA’s 2021 profile for Wisconsin tracks carbon dioxide emissions, sulfur dioxide emissions and nitrogen oxide emissions from electricity generators in the state. The profile expresses the emissions both in terms of annual volumes and

5 See Commission Memorandum, Appendix E, PSC REF # 441273.
per-MWh rates. In its most recent state electricity profile of Wisconsin, EIA reports that the state’s electricity sector emitted a total of 36,408,000 metric tons of carbon dioxide in 2021.\(^6\) That works out to an emissions rate of 1,246 pounds, or 0.566 metric tons, of carbon dioxide per MWh generated in Wisconsin. The emission rate reported in 2021 is higher than the numbers from the previous two years (1,188 lbs. in 2020\(^7\) and 1,233 lbs. in 2019\(^8\)). I estimate that it will take two more years before the cumulative impact from this wave of solar generation translates into lower CO\(_2\) emissions as reported in EIA’s electricity profiles for Wisconsin.

Q. As a zero-carbon source of renewable electricity, how much carbon dioxide would Langdon Mills Solar displace through its operation?

A. If EIA’s emission rate of 1,246 lbs./MWh were multiplied by Langdon Mills Solar’s expected output over its first 10 years, the project would avoid or displace an average of 208,422 metric tons of CO\(_2\) per year over its first 10 years of operation, all other things being equal. While this is admittedly a crude methodology that does not take into account expected power plant retirements in the next five years, it is a reasonable approach for producing a ballpark estimate of emissions reductions from a power plant fueled by a noncombustible renewable energy source. Moreover, the calculation I provide can be updated each year.

\(^6\) See Wisconsin Electricity Profile 2021, Energy Information Administration (https://www.eia.gov/electricity/state/Wisconsin/).

\(^7\) See Wisconsin Electricity Profile 2020, Energy Information Administration (https://www.eia.gov/electricity/state/archive/2020/Wisconsin/).

\(^8\) See Wisconsin Electricity Profile 2019, Energy Information Administration (https://www.eia.gov/electricity/state/archive/2019/Wisconsin/).
Q. How will Langdon Mills Solar contribute to system reliability?

A. Utility-scale solar plants built with single-axis tracking devices are designed to follow the sun’s daily path during daylight hours, starting with the first minutes of sunrise and continuing through to the final minutes of sunset. This design feature optimizes the solar plant’s ability to capture sunshine in the early morning and in the late afternoon/early evening hours. The latter attribute is particularly valuable for utilities that have significant summer peaks, which tend to occur between 3:00 pm and 7:00 pm in those months. Along with 200 MW(AC) of solar generation, Langdon Mills Solar also features a battery energy storage component totaling 50 MW(AC). A BESS of that size can store up to 200 MWh of electricity. The battery energy storage system enhances the solar output by storing excess production that occurs in the morning or early afternoon for use later that day. With the capability of providing grid support after sundown, a solar and storage project in Columbia County will reduce the need for generation from other utility sources during late afternoon peak periods. This particular attribute will become more valuable to Wisconsin electricity customers given the volatility of natural gas prices experienced over the last 12 months and the effects of that fuel price volatility on wholesale electricity costs.
Q. What is your view on the project’s impact on Columbia County’s agricultural land base?

A. If approved and constructed, Langdon Mills Solar would have a land footprint of about 1,250 acres, sufficient to encompass the primary and alternate arrays as well as the project substation and BESS, according to Ursa Solar witness Hanjoo Jun (Direct-Ursa Solar-Jun-4). It appears that all 1,250 acres is designated as agricultural land. Columbia County has a total area of 774 square miles, according to its website.9

Multiplying 774 by 640, the number of acres in a square mile, results in a total of 495,360 acres of land. Of that total, 304,058 acres were in active cultivation in 2017, according to the U.S. Department of Agriculture’s county-by-county census of farms and farming operations from that year.10 The 304,058-acre total amounts to 61% of the total land area available in Columbia County. A project footprint of 1,235 acres equates to about 0.4% of actively cultivated land identified in the Agriculture Department’s 2017 census. By way of corroboration, Ursa Solar witness David Loomis estimates that the Langdon Mills Project Study Area, comprising 2,311 acres, accounts for about 0.7% of the land area in Columbia County that is actively cultivated. In his direct testimony, Witness Loomis also states that the “loss of this small number of acres of production in the

10 See https://www.nass.usda.gov/Publications/AgCensus/2017/Online Resources/County Profiles/Wisconsin/cp55021.pdf.
county for a temporary time will have a de minimis impact” on the agricultural
supply chain serving local farms (Direct-Ursa Solar-Loomis-8).

Q. Does RENEW support approval of the Langdon Mills Solar project?

A. Yes. RENEW wholeheartedly supports Commission approval of Langdon Mills
Solar. In our view, this project, like other large solar generating facilities that the
Commission has approved, would protect human health and the natural
environment while strengthening the state’s economy. The economic benefits
would come in two forms. Initially, during its construction phase, Langdon Mills
Solar would create more than 220 well-paying jobs for the state of Wisconsin,
according to Ursa Solar witness David Loomis (Direct-Ursa Solar-Loomis-4). The
participation of skilled laborers and apprentices at the job site would increase
expenditures and tax revenues for Columbia County and the state of Wisconsin by
as much as $28 million in total as project construction proceeds (Direct-Ursa
Solar-Loomis-5). Second, Langdon Mills Solar will, once energized, provide
rental income to participating landowners as well as payments in lieu of taxes to
local jurisdictions hosting the installation.

Consistent with Wisconsin’s Energy Priorities Law, this project will
provide these benefits by converting a locally available, noncombustible
renewable energy resource—sunshine—to electricity, and feeding its output into
existing power lines. For the foreseeable future at least, electricity generated by
Langdon Mills Solar should displace fossil-fueled generation at all times. When
Langdon Mills Solar is energized, its output will flow along the existing high
capacity transmission lines that today move generation from the Columbia Energy
Center near Portage to other parts of the state, as depicted in the Zone 3 Existing Facilities Map contained in the 10-year assessment issued by American Transmission Company in 2022.11 The Columbia power plant is set to be retired in 2026.

Q. Does this complete your direct testimony?

A. Yes, it does.